急需單片機—簡易電子琴的C語言程序,希望各位大蝦幫幫忙,小女非常感謝!
最佳回答:
22.電子琴
1.實驗任務
(1.由4X4組成16個按鈕矩陣,設計成16個音。
(2.可隨意彈奏想要表達的音樂。
2.電路原理圖
圖4.22.1
3.系統板硬件連線
(1.把“單片機系統”區域中的P1.0端口用導線連接到“音頻放大模塊”區域中的SPKIN端口上;
(2.把“單片機系統“區域中的P3.0-P3.7端口用8芯排線連接到“4X4行列式鍵盤”區域中的C1-C4R1-R4端口上;
4.相關程序內容
(1.4X4行列式鍵盤識別;
(2.音樂產生的方法;
一首音樂是許多不同的音階組成的,而每個音階對應著不同的頻率,這樣我們就可以利用不同的頻率的組合,即可構成我們所想要的音樂了,當然對於單片機來產生不同的頻率非常方便,我們可以利用單片機的定時/計數器T0來產生這樣方波頻率信號,因此,我們只要把一首歌曲的音階對應頻率關系弄正確即可。現在以單片機12MHZ晶振為例,例出高中低音符與單片機計數T0相關的計數值如下表所示
音符頻率(HZ)簡譜碼(T值)音符頻率(HZ)簡譜碼(T值)
低1DO26263628#4FA#74064860
#1DO#27763731中5SO78464898
低2RE29463835#5SO#83164934
#2RE#31163928中6LA88064968
低3M33064021#693264994
低4FA34964103中7SI98865030
#4FA#37064185高1DO104665058
低5SO39264260#1DO#110965085
#5SO#41564331高2RE117565110
低6LA44064400#2RE#124565134
#646664463高3M131865157
低7SI49464524高4FA139765178
中1DO52364580#4FA#148065198
#1DO#55464633高5SO156865217
中2RE58764684#5SO#166165235
#2RE#62264732高6LA176065252
中3M65964777#6186565268
中4FA69864820高7SI196765283
下面我們要為這個音符建立一個表格,有助於單片機通過查表的方式來獲得相應的數據
低音0-19之間,中音在20-39之間,高音在40-59之間
TABLE:DW0,63628,63835,64021,64103,64260,64400,64524,0,0
DW0,63731,63928,0,64185,64331,64463,0,0,0
DW0,64580,64684,64777,64820,64898,64968,65030,0,0
DW0,64633,64732,0,64860,64934,64994,0,0,0
DW0,65058,65110,65157,65178,65217,65252,65283,0,0
DW0,65085,65134,0,65198,65235,65268,0,0,0
DW0
2、音樂的音拍,一個節拍為單位(C調)
曲調值DELAY曲調值DELAY
調4/4125ms調4/462ms
調3/4187ms調3/494ms
調2/4250ms調2/4125ms
對於不同的曲調我們也可以用單片機的另外一個定時/計數器來完成。
下面就用AT89S51單片機產生一首“生日快樂”歌曲來說明單片機如何產生的。
在這個程序中用到了兩個定時/計數器來完成的。其中T0用來產生音符頻率,T1用來產生音拍。
5.程序框圖
貼不了.
7.C語言源程序
#include<AT89X51.H>
unsignedcharcodetable[]={0x3f,0x06,0x5b,0x4f,
0x66,0x6d,0x7d,0x07,
0x7f,0x6f,0x77,0x7c,
0x39,0x5e,0x79,0x71};
unsignedchartemp;
unsignedcharkey;
unsignedchari,j;
unsignedcharSTH0;
unsignedcharSTL0;
unsignedintcodetab[]={64021,64103,64260,64400,
64524,64580,64684,64777,
64820,64898,64968,65030,
65058,65110,65157,65178};
voidmain(void)
{
TMOD=0x01;
ET0=1;
EA=1;
while(1)
{
P3=0xff;
P3_4=0;
temp=P3;
temp=temp&0x0f;
if(temp!=0x0f)
{
for(i=50;i>0;i--)
for(j=200;j>0;j--);
temp=P3;
temp=temp&0x0f;
if(temp!=0x0f)
{
temp=P3;
temp=temp&0x0f;
switch(temp)
{
case0x0e:
key=0;
break;
case0x0d:
key=1;
break;
case0x0b:
key=2;
break;
case0x07:
key=3;
break;
}
temp=P3;
P1_0=~P1_0;
P0=table[key];
STH0=tab[key]/256;
STL0=tab[key]%256;
TR0=1;
temp=temp&0x0f;
while(temp!=0x0f)
{
temp=P3;
temp=temp&0x0f;
}
TR0=0;
}
}
P3=0xff;
P3_5=0;
temp=P3;
temp=temp&0x0f;
if(temp!=0x0f)
{
for(i=50;i>0;i--)
for(j=200;j>0;j--);
temp=P3;
temp=temp&0x0f;
if(temp!=0x0f)
{
temp=P3;
temp=temp&0x0f;
switch(temp)
{
case0x0e:
key=4;
break;
case0x0d:
key=5;
break;
case0x0b:
key=6;
break;
case0x07:
key=7;
break;
}
temp=P3;
P1_0=~P1_0;
P0=table[key];
STH0=tab[key]/256;
STL0=tab[key]%256;
TR0=1;
temp=temp&0x0f;
while(temp!=0x0f)
{
temp=P3;
temp=temp&0x0f;
}
TR0=0;
}
}
P3=0xff;
P3_6=0;
temp=P3;
temp=temp&0x0f;
if(temp!=0x0f)
{
for(i=50;i>0;i--)
for(j=200;j>0;j--);
temp=P3;
temp=temp&0x0f;
if(temp!=0x0f)
{
temp=P3;
temp=temp&0x0f;
switch(temp)
{
case0x0e:
key=8;
break;
case0x0d:
key=9;
break;
case0x0b:
key=10;
break;
case0x07:
key=11;
break;
}
temp=P3;
P1_0=~P1_0;
P0=table[key];
STH0=tab[key]/256;
STL0=tab[key]%256;
TR0=1;
temp=temp&0x0f;
while(temp!=0x0f)
{
temp=P3;
temp=temp&0x0f;
}
TR0=0;
}
}
P3=0xff;
P3_7=0;
temp=P3;
temp=temp&0x0f;
if(temp!=0x0f)
{
for(i=50;i>0;i--)
for(j=200;j>0;j--);
temp=P3;
temp=temp&0x0f;
if(temp!=0x0f)
{
temp=P3;
temp=temp&0x0f;
switch(temp)
{
case0x0e:
key=12;
break;
case0x0d:
key=13;
break;
case0x0b:
key=14;
break;
case0x07:
key=15;
break;
}
temp=P3;
P1_0=~P1_0;
P0=table[key];
STH0=tab[key]/256;
STL0=tab[key]%256;
TR0=1;
temp=temp&0x0f;
while(temp!=0x0f)
{
temp=P3;
temp=temp&0x0f;
}
TR0=0;
}
}
}
}
voidt0(void)interrupt1using0
{
TH0=STH0;
TL0=STL0;
P1_0=~P1_0;
}