Mask Operation filter2D函數
Last Edit 2013/12/24
所謂的Mask Operation就是濾波。
第一步:建立Mask:
Mat kern = (Mat_(3,3) << 0, -1, 0,
-1, 5, -1,
0, -1, 0);
Mat_是一個模板,建立了一個3*3的矩陣,矩陣的值在-128~127.
第二步:使用filter2D.
函數原型:
void filter2D(InputArray src, //要進行濾波的圖像
OutputArray dst,//濾波後的圖像
int ddepth, //原圖像的深度 src.depth()
InputArray kernel, //第一步建立的Mask
Point anchor=Point(-1,-1),//Mask的中心點
double delta=0, //Optional value added to the filtered pixels before storing them in dst
int borderType=BORDER_DEFAULT
)
filter2D(I, K, I.depth(), kern );
以下是OpenCV2.0提供的sample:
#include
#include
#include
#include
using namespace std;
using namespace cv;
void help(char* progName)
{
cout << endl
<< "This program shows how to filter images with mask: the write it yourself and the"
<< "filter2d way. " << endl
<< "Usage:" << endl
<< progName << " [image_name -- default lena.jpg] [G -- grayscale] " << endl << endl;
}
void Sharpen(const Mat& myImage,Mat& Result);
int main( int argc, char* argv[])
{
help(argv[0]);
const char* filename = argc >=2 ? argv[1] : "lena.jpg";
Mat I, J, K;
if (argc >= 3 && !strcmp("G", argv[2]))
I = imread( filename, CV_LOAD_IMAGE_GRAYSCALE);
else
I = imread( filename, CV_LOAD_IMAGE_COLOR);
namedWindow("Input", CV_WINDOW_AUTOSIZE);
namedWindow("Output", CV_WINDOW_AUTOSIZE);
imshow("Input", I);
double t = (double)getTickCount();
Sharpen(I, J);
t = ((double)getTickCount() - t)/getTickFrequency();
cout << "Hand written function times passed in seconds: " << t << endl;
imshow("Output", J);
cvWaitKey(0);
Mat kern = (Mat_(3,3) << 0, -1, 0,
-1, 5, -1,
0, -1, 0);
t = (double)getTickCount();
filter2D(I, K, I.depth(), kern );
t = ((double)getTickCount() - t)/getTickFrequency();
cout << "Built-in filter2D time passed in seconds: " << t << endl;
imshow("Output", K);
cvWaitKey(0);
return 0;
}
void Sharpen(const Mat& myImage,Mat& Result)
{
CV_Assert(myImage.depth() == CV_8U); // accept only uchar images
const int nChannels = myImage.channels();
Result.create(myImage.size(),myImage.type());
for(int j = 1 ; j < myImage.rows-1; ++j)
{
const uchar* previous = myImage.ptr(j - 1);
const uchar* current = myImage.ptr(j );
const uchar* next = myImage.ptr(j + 1);
uchar* output = Result.ptr(j);
for(int i= nChannels;i < nChannels*(myImage.cols-1); ++i)
{
*output++ = saturate_cast(5*current[i]
-current[i-nChannels] - current[i+nChannels] - previous[i] - next[i]);
}
}
Result.row(0).setTo(Scalar(0));
Result.row(Result.rows-1).setTo(Scalar(0));
Result.col(0).setTo(Scalar(0));
Result.col(Result.cols-1).setTo(Scalar(0));
}