程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> C++入門知識 >> POJ 2955 Brackets,poj2955brackets

POJ 2955 Brackets,poj2955brackets

編輯:C++入門知識

POJ 2955 Brackets,poj2955brackets


Brackets

Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6622   Accepted: 3558

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < imn, ai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

Stanford Local 2004     題目大意:給你一個長度不超過100的括號序列,求最長合法括號子序列的長度。合法的括號序列滿足下列條件: 1.空的括號序列是合法的; 2.如果一個括號序列s是合法的,那麼(s)和[s]都是合法的; 3.如果兩個括號序列a和b都是合法的,那麼ab也是合法的; 4.其他的括號序列都是不合法的。 例如:(), [], (()), ()[], ()[()]都是合法的,而(, ], )(, ([)], ([(]都是不合法的。   解題思路:一道典型的區間DP模型題目。分析一下問題,可以發現:如果找到一對匹配的括號,例如[xxx]oooo,就把區間分成兩部分,一部分是xxx,另一部分是oooo。 設dp[i][j]表示區間[i,j]之間的最長合法括號子序列的長度,那麼當i<j時,如果區間[i+1,j]內沒有與i匹配的括號,則dp[i][j]=dp[i+1][j];如果存在一個與之匹配的k,那麼dp[i][j]=max{dp[i+1][j], dp[i+1][k-1]+dp[k+1][j]+1(i<=k<=j&&i和k是一對匹配的括號)}。因此,我們將整個串長作為區間進行搜索,那麼最後2*dp[0][len-1]即為答案,len表示串的長度。詳見代碼。     附上AC代碼: 1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 using namespace std; 5 const int maxn = 105; 6 char str[maxn]; 7 int dp[maxn][maxn]; 8 9 bool match(char a, char b){ 10 return (a=='('&&b==')') || (a=='['&&b==']'); 11 } 12 13 int dfs(int l, int r){ 14 if (l > r) 15 return 0; 16 if (l == r) 17 return dp[l][r] = 0; 18 if (l+1 == r) 19 return dp[l][r] = match(str[l], str[r]); 20 if (dp[l][r] != -1) 21 return dp[l][r]; 22 int ans = dfs(l+1, r); 23 for (int i=l; i<=r; ++i) 24 if (match(str[l], str[i])) 25 ans = max(ans, dfs(l+1, i-1)+dfs(i+1, r)+1); 26 return dp[l][r] = ans; 27 } 28 29 int main(){ 30 while (~scanf("%s", str) && str[0]!='e'){ 31 memset(dp, -1, sizeof(dp)); 32 int len = strlen(str); 33 dfs(0, len-1); 34 printf("%d\n", 2*dp[0][len-1]); 35 } 36 return 0; 37 } View Code

 

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved