Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
1 class Solution { 2 public: 3 int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) { 4 if(obstacleGrid.empty() || obstacleGrid[0].empty()){ 5 return 0; 6 } 7 int row = obstacleGrid.size(); 8 int col = obstacleGrid[0].size(); 9 10 int dp[row][col]; 11 12 dp[0][0] = (obstacleGrid[0][0] == 0 ? 1 : 0); 13 14 for(int i = 1; i < row; i++){ 15 dp[i][0] = ((dp[i-1][0] == 1 && obstacleGrid[i][0] == 0)? 1 : 0); 16 } 17 18 for(int j = 1; j < col; j++){ 19 dp[0][j] = ((dp[0][j-1] == 1 && obstacleGrid[0][j] == 0)? 1: 0); 20 } 21 22 for(int i = 1 ; i < row; i++){ 23 for(int j = 1 ; j < col;j++){ 24 if(obstacleGrid[i][j] == 1){ 25 dp[i][j] = 0; 26 }else{ 27 dp[i][j] = dp[i-1][j]+dp[i][j-1]; 28 } 29 } 30 } 31 32 return dp[row-1][col-1]; 33 } 34 };