首先貼一段win32API實現的多線程的代碼,使用CreateThread實現,如果不要傳參數,就把第四個參數設為NULL
#include<Windows.h> #include<iostream> using namespace std; //有參數 DWORD WINAPI MyThread_lpParamter(LPVOID lpParamter) { string *lp = (string *)lpParamter; while (1) { cout << "MyThread1 Runing :"<<lp->c_str()<<""<< endl; Sleep(5000); } } int main() { string parameter = "我是參數"; HANDLE hThread2 = CreateThread(NULL, 0, MyThread_lpParamter, ¶meter, 0, NULL); CloseHandle(hThread2); while(1); return 0; }
下面是執行的結果
互斥鎖:
當一個全局的共有資源被多個線程同時調用會出現意想不到的問題,比如你去銀行取出所有錢,同時又轉所有錢到支付寶,如果這兩塊同時執行,就有可能轉出雙倍的錢,這是不允許的。
這時候要使用的這個線程需要將這個資源(取錢這個過程)先“鎖”起來,然後用好之後再解鎖,這期間別的線程就無法使用了,其他線程的也是類似的過程。
#include<Windows.h> #include<iostream> using namespace std; //互斥鎖 HANDLE hMutex1; int flag; DWORD WINAPI MyThread2(LPVOID lpParamter) { while (1) {
//沒上鎖的話就自己鎖上,否則等著 WaitForSingleObject(hMutex1,INFINITE); flag=!flag; cout << "MyThread1 Runing :"<<"線程2"<<" "<<flag<< endl; Sleep(1000);
//解鎖 ReleaseMutex(hMutex1); } } DWORD WINAPI MyThread1(LPVOID lpParamter) { while (1) { WaitForSingleObject(hMutex1,INFINITE); flag=!flag; cout << "MyThread2 Runing"<<"線程1" <<" "<<flag<< endl; Sleep(10); ReleaseMutex(hMutex1); } } int main() { //創建一個鎖 hMutex1 =CreateMutex(NULL,FALSE,NULL); HANDLE hThread1 = CreateThread(NULL, 0, MyThread1, NULL, 0, NULL); CloseHandle(hThread1); HANDLE hThread2 = CreateThread(NULL, 0, MyThread2, NULL, 0, NULL); CloseHandle(hThread2); while(1); return 0; }
可以看到結果,就算線程1延時的時間非常短,但是由於線程2執行的時候,就被鎖住了,線程1就處於等待。結果就是線程1和線程2會交替執行
多進程互斥:
如果某個文件不允許被多個進程用時使用,這時候也可以采用進程間互斥。當一個進程創建一個進程後創建一個鎖,第二個進程使用OpenMutex獲取第一個進程創建的互斥鎖的句柄。
第一個進程:
#include<Windows.h> #include<iostream> using namespace std; //互斥鎖 HANDLE hMutex1; int flag; DWORD WINAPI MyThread(LPVOID lpParamter) { while (1) { WaitForSingleObject(hMutex1,INFINITE); flag=!flag; cout << "MyThread2 Runing"<<"進程1" <<" "<<flag<< endl; Sleep(500); //此時鎖1被鎖,無法在下面解鎖2 ReleaseMutex(hMutex1); } } int main() { //創建一個鎖 hMutex1 =CreateMutex(NULL,false,LPCWSTR("hMutex1")); HANDLE hThread1 = CreateThread(NULL, 0, MyThread, NULL, 0, NULL); CloseHandle(hThread1); while(1); return 0; }
第二個進程:
#include<Windows.h> #include<iostream> using namespace std; //互斥鎖 HANDLE hMutex1; int flag; //無參數 DWORD WINAPI MyThread(LPVOID lpParamter) { while (1) { WaitForSingleObject(hMutex1,INFINITE); flag=!flag; cout << "MyThread2 Runing"<<"進程2" <<" "<<flag<< endl; Sleep(5000); ReleaseMutex(hMutex1); } } int main() { //打開 hMutex1 = OpenMutex(MUTEX_ALL_ACCESS,false,LPCWSTR("hMutex1")); if(hMutex1!=NULL) cout<<"鎖打開成功"<<endl; HANDLE hThread1 = CreateThread(NULL, 0, MyThread, NULL, 0, NULL); CloseHandle(hThread1); while(1); return 0; }
結果可以看到,之運行進程1,消息打印的非常快,但是把進程2打開之後,進程1的消息打印速度就跟進程2變得一樣了。
死鎖:
何為死鎖,舉個例子,兩個櫃子,兩個鎖,兩把鑰匙,把兩把鑰匙放進另外一個櫃子,然後鎖上,結果呢,兩個都打不開了。在程序內部,這樣就會導致兩個進程死掉。
看例子
#include<Windows.h> #include<iostream> using namespace std; //互斥鎖 HANDLE hMutex1; HANDLE hMutex2; int flag; DWORD WINAPI MyThread2(LPVOID lpParamter) { while (1) { WaitForSingleObject(hMutex1,INFINITE); flag=!flag; cout << "MyThread1 Runing :"<<"線程1"<<" "<<flag<< endl; Sleep(1000); //此時鎖2被鎖,無法在下面解鎖1 WaitForSingleObject(hMutex2,INFINITE); ReleaseMutex(hMutex2); ReleaseMutex(hMutex1); } } DWORD WINAPI MyThread1(LPVOID lpParamter) { while (1) { WaitForSingleObject(hMutex2,INFINITE); flag=!flag; cout << "MyThread2 Runing"<<"線程1" <<" "<<flag<< endl; Sleep(1000); //此時鎖1被鎖,無法在下面解鎖2 WaitForSingleObject(hMutex1,INFINITE); ReleaseMutex(hMutex1); ReleaseMutex(hMutex2); } } int main() { //創建一個鎖 hMutex1 =CreateMutex(NULL,FALSE,NULL); hMutex2 =CreateMutex(NULL,FALSE,NULL); HANDLE hThread1 = CreateThread(NULL, 0, MyThread1, NULL, 0, NULL); CloseHandle(hThread1); HANDLE hThread2 = CreateThread(NULL, 0, MyThread2,NULL, 0, NULL); CloseHandle(hThread2); while(1); return 0; }
結果呢就是,兩個線程執行打印一次就死掉了