Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 12105 Accepted Submission(s): 5497
Problem Description A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.Input n (0 < n < 20).
Output The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
Sample Input 6 8
Sample Output Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2 題意:輸入一個 n 找出1~n的組合,使得相鄰兩個數之和為素數; 分析:預處理40之間的素數,然後回溯; 1 #include<iostream> 2 #include<cstring> 3 #define N 25 4 #define M 40 5 using namespace std; 6 7 bool is_prime[M],visited[N]; 8 int n,test,ans[N]; 9 10 void work(int k) 11 { 12 int i; 13 if(k==n+1) 14 { 15 if(!is_prime[ans[n]+ans[1]]) return ; 16 for(i=1;i<=n-1;i++) 17 cout<<ans[i]<<" "; 18 cout<<ans[i]<<endl; 19 return ; 20 } 21 for(i=2;i<=n;i++) 22 { 23 if(!visited[i]&&is_prime[ans[k-1]+i]) 24 { 25 visited[i]=true; 26 ans[k]=i; 27 work(k+1); 28 visited[i]=false; 29 } 30 } 31 } 32 33 bool prime(int n) 34 { 35 if(n==1) return false; 36 if(n==2||n==3) return true; 37 int i; 38 for(i=2;i<n;i++) 39 if(n%i==0) 40 return false; 41 return true; 42 } 43 44 int main() 45 { 46 int i;test=1; 47 for(i=1;i<M;i++) is_prime[i]=prime(i); 48 while(cin>>n) 49 { 50 ans[1]=1; 51 memset(visited,false,sizeof(visited)); 52 cout<<"Case "<<test<<":"<<endl; 53 work(2); 54 test++; 55 cout<<endl; 56 } 57 return 0; 58 } View Code