Follow up for "Unique Paths":緊接著上一題“唯一路勁”,現在考慮有一些障礙在網格中,無法到達,請重新計算到達目的地的路線數目
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
Subscribe to see which companies asked this question
Hide Tags Array Dynamic Programming Hide Similar Problems (M) Unique Paths//思路首先: //此題與原問題相較,變得是什麼? //1,此障礙物下面和右邊將不在獲得來自於此的數量,也可以理解為貢獻為0 //2,有障礙的地方也將無法到達(這一條開始時沒想到,總感覺leetcode題目意思不願意說得明了),可能輸數直接為0 class Solution { public: int uniquePathsWithObstacles(vector>& obstacleGrid) { int m=obstacleGrid.size(); int n=obstacleGrid[0].size(); vector< vector > result(m+1); for(int i=0;i <=m ;i++) result[i].resize(n+1);//設置數組的大小m+1行,n+1列 //初始化一定要正確,否則錯無赦 result[1][1]= obstacleGrid[0][0]==1? 0:1; for(int i=2;i<=n;i++) result[1][i]=obstacleGrid[0][i-1]==1?0:result[1][i-1];//由上一次來推到 for(int i=2;i<=m;i++) result[i][1]=obstacleGrid[i-1][0]==1?0:result[i-1][1]; for(int i=2;i<=m;i++) for(int j=2;j<=n;j++) result[i][j]=obstacleGrid[i-1][j-1]==1?0:result[i-1][j]+result[i][j-1]; //一旦當前有石頭就無法到達,直接置零 return result[m][n]; } };