一. 題目描述
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C once number of times.
Note:
• All numbers (including target) will be positive integers.
• Elements in a combination (a1, a2, …, ak) must be in non-descending order. (ie, a1 > a2 > … > ak).
• The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5 and target 8, A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
二. 題目分析
該題與之前的Combination Sum的解法類似,均可使用深度優先搜索來解。不同的是該題需要注意如何避免組合重復,因為不能重復,所以要跳過一樣的數字。
例如:一個整數集合:[2 2 3],當我們要使用第二個2時,我們要檢查他的前面一個2是否使用了,當未被使用時第二個2就不能使用;。
三. 示例代碼
#include
#include
#include
using namespace std;
class Solution
{
public:
vector > combinationSum2(vector &candidates, int target)
{
vector temp; // 用於存放臨時組合
sort(candidates.begin(), candidates.end());
combinationDFS(candidates, temp, 0, target);
return result;
}
private:
vector > result;
void combinationDFS(vector &candidates, vector &temp, size_t index, int target)
{
if (target == 0)
{
result.push_back(temp);
return;
}
else
{
int prev = -1;
for (size_t i = index; i < candidates.size(); ++i)
{
// 由於candidates中元素可能有重復,以下操作的意義是判斷上輪循
// 環是否選擇了candidates[i],是則跳過選擇下一個candidates元素
// 直到下標到達比prev大的元素,選擇該元素進行下一輪遞歸
if (prev == candidates[i])
continue;
if (candidates[i] > target)
return;
prev = candidates[i];
temp.push_back(candidates[i]);
combinationDFS(candidates, temp, i + 1, target - candidates[i]);
temp.pop_back();
}
}
}
};
四. 小結