一. 題目描述
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
二. 題目分析
這一題的難度要遠高於前面幾題,需要用到動態規劃,代碼參考了博客:http://www.cnblogs.com/grandyang/p/4295761.html
這裡需要兩個遞推公式來分別更新兩個變量local
和global
,然後求至少k
次交易的最大利潤。我們定義local[i][j]
為在到達第i天時最多可進行j次交易並且最後一次交易在最後一天賣出的最大利潤,此為局部最優。然後我們定義global[i][j]
為在到達第i天時最多可進行j次交易的最大利潤,此為全局最優。它們的遞推式為:
local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)
global[i][j] = max(local[i][j], global[i - 1][j])
三. 示例代碼
#include
#include
#include
#include
#include
using namespace std;
class Solution {
public:
int maxProfit(int k, vector &prices) {
if(prices.empty() || k == 0)
return 0;
if(k >= prices.size())
return solveMaxProfit(prices);
vector global(k + 1, 0);
vector local(k + 1, 0);
for(int i = 1; i < prices.size(); i++) {
int diff = prices[i] - prices[i - 1];
for(int j = k; j >= 1; j--) {
local[j] = max(local[j] + diff, global[j - 1] + max(diff, 0));
global[j] = max(global[j], local[j]);
}
}
return global[k];
}
private:
int solveMaxProfit(vector &prices) {
int res = 0;
for(int i = 1; i < prices.size(); i++) {
int diff = prices[i] - prices[i - 1];
if(diff > 0)
res += diff;
}
return res;
}
};