Generate Parentheses
Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
For example, given n = 3, a solution set is:
((())), (()()), (())(), ()(()), ()()()
分析:
生成合法的括號串。
遞歸:
每次先判斷當前串中的左括號數目是否大於等於右括號數目,如果成立,那麼向當前子串中添加左括號或者右括號。
Python代碼:
class Solution(object): def generateParenthesis(self, n): :type n: int :rtype: List[str] res = [] self.dfs('', n, res) return res def dfs(self, cur_s, n, res): if len(cur_s) == 2 * n: res.append(cur_s) return l_n, r_n = cur_s.count('('), cur_s.count(')') if l_n >= r_n: if l_n < n: self.dfs(cur_s + '(', n, res) if r_n < n: self.dfs(cur_s + ')', n, res)
class Solution { public: vectorgenerateParenthesis(int n) { vector res; dfs(, 0, 0, n, res); return res; } void dfs(string cur_s, int l, int r, int n, vector & res){ if(cur_s.length() == 2 * n){ res.push_back(cur_s); return; } if(l >= r){ if(l < n){ dfs(cur_s + '(', l+1, r, n, res); } if(r < n){ dfs(cur_s + ')', l, r+1, n, res); } } } };
別人家的代碼:
Discuss中看到的動態規劃:
To generate all n-pair parentheses, we can do the following:
Generate 0 pair inside, n - 1 afterward: () (...)...
Generate 1 pair inside, n - 2 afterward: (()) (...)...
...
Generate n - 1 pair inside, 0 afterward: ((...))
I bet you see the overlapping subproblems here. Here is the code:
(you could see in the code that x
represents one j-pair solution and y
represents one (i - j - 1) pair solution, and we are taking into account all possible of combinations of them)
class Solution(object): def generateParenthesis(self, n): :type n: int :rtype: List[str] dp = [[] for i in range(n + 1)] dp[0].append('') for i in range(n + 1): for j in range(i): dp[i] += ['(' + x + ')' + y for x in dp[j] for y in dp[i - j - 1]] return dp[n]