Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. As an example, the maximal sub-rectangle of the array:Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].Output
Output the sum of the maximal sub-rectangle.Sample Input
4
0 -2 -7 0
9 2 -6 2 -4 1 -4 1
-1 8 0 -2
Sample Output
15
題意:求最大的子矩陣的和
解題思路:通過循環,用b[k]數組儲存每列的和,例如當循環到第2行時,b[0]儲存的就是5。 5是怎麼來的呢?它是0+9+(-4)=5。
b[1]儲存的就是1。 -2+2+1=1
這樣求出每列的和然後同時找b[k]序列的最大子段和,不斷更新最大值,循環完之後,就可以找出最大值了.....
也許這樣比較抽象,舉個栗子:(這裡就不用N行N列的做例子了.....)
2維數組:
1 2 3
-5 6 7
我們先求
第0行 b數組 1 2 3
最大子段和:1+2+3=6 這裡可以理解為 這是 1 2 3 這個子矩陣
第1行
b數組 -4 8 10
最大子段和:8+10=18 這裡就是 2 3
6 7 這個子矩陣
所以答案就是18
怎麼說,思想應該是通過求每列的和,使得它變成一個求最大字段和的問題.........
代碼如下:(去掉注釋,也許會對理解思路有幫助....)
1 #include<stdio.h> 2 #include <limits> 3 #include<string.h> 4 using namespace std; 5 int a[105][105],b[105]; 6 int n,cursum=-130,max=numeric_limits<int>::min(); 7 8 int curmaxsum() 9 { 10 int sum=0,cursum=-130; 11 for(int i=0; i<n; i++) 12 { 13 sum+=b[i]; 14 if(sum<0) 15 sum=b[i]; 16 if(sum>cursum) 17 cursum=sum; 18 } 19 return cursum; 20 } 21 22 int maxsub() 23 { 24 for(int i=0; i<n; i++) 25 { 26 memset(b,0,sizeof(b)); 27 for(int j=i; j<n; j++) 28 { 29 //printf("\nj=%d\n",j); 30 for(int k=0; k<n; k++) 31 { 32 b[k]+=a[j][k]; 33 } 34 /*for(int k=0; k<n-1; k++) 35 printf("%d ",b[k]); 36 printf("%d\n",b[n-1]);*/ 37 38 curmaxsum(); 39 //printf("cursum=%d\n",cursum); 40 if(cursum>max) 41 max=cursum; 42 // printf("max=%d\n",max); 43 } 44 } 45 return max; 46 } 47 48 int main() 49 { 50 while(scanf("%d",&n)==1) 51 { 52 for(int i=0; i<n; i++) 53 for(int j=0; j<n; j++) 54 scanf("%d",&a[i][j]); 55 // printf("******************************\n\n"); 56 maxsub(); 57 printf("%d\n",max); 58 } 59 return 0; 60 }