Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].Output
Output the sum of the maximal sub-rectangle.Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
題解:怎麼說呢。。就是第一行的一個序列加到第二行,找到他們的和序列的最大子序列,然後他們的和序列再加第三行,再找,每加一次找一次,加到第n行。
然後從第二行開始,按照上面的進行,再從第三行開始..... 直到第n行....
每次都要更新他們的子矩陣的的最大值,用一個變量更新
不說了,上代碼,最下面有輸出截圖
#include<iostream> #include<cstdio> #include<cstring> using namespace std; int n,sum,f,Max; int b[20000]; int dp[150][150]; int main() { f=-100; cin>>n; for(int i=0; i<n; i++) for(int j=0; j<n; j++) { cin>>dp[i][j]; } for(int k=0; k<n; k++) { memset(b,0,sizeof(b)); // 一定每次記得清零 for(int i=k; i<n; i++) { for(int j=0; j<n; j++) { b[j]+=dp[i][j]; } sum = Max =-100; //賦很小的值 for(int i=0; i<n; i++) { if (sum<0) sum = b[i]; else sum += b[i]; if (Max < sum) Max = sum; } if(f<Max) // 每次都要比較更新最大子矩陣和 f=Max; } } cout<<f<<endl; }