Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
f(i-1, j-1) word1[i] == word2[j]
f(i, j) =
Min{ f(i-1, j), f(i, j-1), f(i-1, j-1} } + 1 word1[i] != word2[j]
如上所示,f(i, j)表示word1.substring(i)與word2.substring(j)直接的距離
1)顯然,如果word1[i] == word2[j],轉化為遞歸解,即f(i-1, j-1)
2)如果word1[i] == word2[j],則可以對兩個字符的最後一個字符串進行三種操作,對與字符word1[i]可以進行如下三種操作:
i) delete,即把此字符刪除,則問題轉化為f(i-1, j)
ii) replace,即把此字符替換為word2[j],則問題轉化為f(i-1, j-1)
iii) Insert,即在此處增加一個字符word2[j], 則問題轉化為f(i, j-1)
根據上述狀態轉移方程,很容易寫出代碼
public int minDistance(String word1, String word2) { if (word1.equals(word2)) { return 0; } if (word1.length() == 0 || word2.length() == 0) { return Math.abs(word1.length() - word2.length()); } int[][] dp = new int[word1.length() + 1][word2.length() + 1]; for (int i = 0; i <= word1.length(); i++) { dp[i][0] = i; } for (int i = 0; i <= word2.length(); i++) { dp[0][i] = i; } for (int i = 1; i <= word1.length(); i++) { for (int j = 1; j <= word2.length(); j++) { if (word1.charAt(i - 1) == word2.charAt(j - 1)) { dp[i][j] = dp[i - 1][j - 1]; } else { dp[i][j] = Math.min(dp[i-1][j-1], Math.min(dp[i-1][j], dp[i][j-1])) + 1; } } } return dp[word1.length()][word2.length()]; }