程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> C++入門知識 >> LeetCode - Edit Distance

LeetCode - Edit Distance

編輯:C++入門知識

LeetCode - Edit Distance


 

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

一個非常經典的動態規劃問題,狀態轉移方程:

f(i-1, j-1) word1[i] == word2[j]

f(i, j) =

Min{ f(i-1, j), f(i, j-1), f(i-1, j-1} } + 1 word1[i] != word2[j]

如上所示,f(i, j)表示word1.substring(i)與word2.substring(j)直接的距離

1)顯然,如果word1[i] == word2[j],轉化為遞歸解,即f(i-1, j-1)

2)如果word1[i] == word2[j],則可以對兩個字符的最後一個字符串進行三種操作,對與字符word1[i]可以進行如下三種操作:

i) delete,即把此字符刪除,則問題轉化為f(i-1, j)

ii) replace,即把此字符替換為word2[j],則問題轉化為f(i-1, j-1)

iii) Insert,即在此處增加一個字符word2[j], 則問題轉化為f(i, j-1)

根據上述狀態轉移方程,很容易寫出代碼

 

    public int minDistance(String word1, String word2) {
       if (word1.equals(word2)) {
            return 0;
        }
        if (word1.length() == 0 || word2.length() == 0) {
            return Math.abs(word1.length() - word2.length());
        }
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];
        for (int i = 0; i <= word1.length(); i++) {
            dp[i][0] = i;
        }
        for (int i = 0; i <= word2.length(); i++) {
            dp[0][i] = i;
        }
        for (int i = 1; i <= word1.length(); i++) {
            for (int j = 1; j <= word2.length(); j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = Math.min(dp[i-1][j-1], Math.min(dp[i-1][j], dp[i][j-1])) + 1;
                }
            }
        }
        return dp[word1.length()][word2.length()];
    }

又是一個比較經典的動態規劃問題。

 

 

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved