題目大意:有個人要從A城市去B城市,每條路只允許走一次,問能走幾次最短路
解題思路:這題的話,難點就是怎麼知道是不是最短路了
首先,先求出到B最短路,這也順便求出了所有點到B的最短距離
接著求出到A的最短路
這樣就能得到兩個數組了,假設d1[u]代表u節點到A城市的最短路d2[v]代表v節點到城市B的最短距離
如果滿足d1[u] + dis[u][v] + d2[v] == d1[v]的話,那麼u,v這條路就屬於最短路中的一條邊了,那樣就可以構邊了
得將城市拆成兩個點,容量為1
#include
#include
#include
#include
#include
using namespace std;
#define N 1010
#define INF 0x3f3f3f3f
struct Edge {
int from, to, cap, flow;
Edge() {}
Edge(int from, int to, int cap, int flow): from(from), to(to), cap(cap), flow(flow) {}
};
struct ISAP {
int p[N], num[N], cur[N], d[N];
int t, s, n, m;
bool vis[N];
vector G[N];
vector edges;
void init(int n) {
this->n = n;
for (int i = 0; i <= n; i++) {
G[i].clear();
d[i] = INF;
}
edges.clear();
}
void AddEdge(int from, int to, int cap) {
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue Q;
d[t] = 0;
vis[t] = 1;
Q.push(t);
while (!Q.empty()) {
int u = Q.front();
Q.pop();
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i] ^ 1];
if (!vis[e.from] && e.cap > e.flow) {
vis[e.from] = true;
d[e.from] = d[u] + 1;
Q.push(e.from);
}
}
}
return vis[s];
}
int Augment() {
int u = t, flow = INF;
while (u != s) {
Edge &e = edges[p[u]];
flow = min(flow, e.cap - e.flow);
u = edges[p[u]].from;
}
u = t;
while (u != s) {
edges[p[u]].flow += flow;
edges[p[u] ^ 1].flow -= flow;
u = edges[p[u]].from;
}
return flow;
}
int Maxflow(int s, int t) {
this->s = s; this->t = t;
int flow = 0;
BFS();
if (d[s] >= n)
return 0;
memset(num, 0, sizeof(num));
memset(cur, 0, sizeof(cur));
for (int i = 0; i < n; i++)
if (d[i] < INF)
num[d[i]]++;
int u = s;
while (d[s] < n) {
if (u == t) {
flow += Augment();
u = s;
}
bool ok = false;
for (int i = cur[u]; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (e.cap > e.flow && d[u] == d[e.to] + 1) {
ok = true;
p[e.to] = G[u][i];
cur[u] = i;
u = e.to;
break;
}
}
if (!ok) {
int Min = n - 1;
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (e.cap > e.flow)
Min = min(Min, d[e.to]);
}
if (--num[d[u]] == 0)
break;
num[d[u] = Min + 1]++;
cur[u] = 0;
if (u != s)
u = edges[p[u]].from;
}
}
return flow;
}
};
ISAP isap;
#define M 100010
int d1[N], d2[N], n, m, s, t, cnt;
int head[N], Next[M], dis[M], to[M];
bool vis[N];
void SPFA(int s, int *d) {
for (int i = 1; i <= n; i++) {
d[i] = INF;
vis[i] = 0;
}
d[s] = 0;
queue q;
q.push(s);
while (!q.empty()) {
int u = q.front();
q.pop();
vis[u] = false;
for (int i = head[u]; i != -1; i = Next[i]) {
int v = to[i];
if (d[v] > d[u] + dis[i]) {
d[v] = d[u] + dis[i];
if (!vis[v]) {
vis[v] = true;
q.push(v);
}
}
}
}
}
void add_edges(int u, int v, int d) {
to[cnt] = v;
dis[cnt] = d;
Next[cnt] = head[u];
head[u] = cnt++;
}
struct Node {
int x, y, z;
}node[M];
void solve() {
scanf(%d%d, &n, &m);
cnt = 0;
memset(head, -1, sizeof(head));
int x, y, z;
for (int i = 0; i < m; i++) {
scanf(%d%d%d, &x, &y, &z);
node[i].x = x;
node[i].y = y;
node[i].z = z;
if (x == y)
continue;
add_edges(y, x, z);
}
scanf(%d%d, &s, &t);
SPFA(t, d2);
cnt = 0;
memset(head, -1, sizeof(head));
for (int i = 0; i < m; i++) {
if (node[i].x == node[i].y)
continue;
add_edges(node[i].x, node[i].y, node[i].z);
}
SPFA(s, d1);
isap.init(n);
for (int i = 1; i <= n; i++)
for (int j = head[i]; j != -1; j = Next[j]) {
int v = to[j];
if (d1[i] + dis[j] + d2[v] == d1[t]) {
isap.AddEdge(i, v, 1);
}
}
printf(%d
, isap.Maxflow(s, t));
}
int main() {
int test;
scanf(%d, &test);
while (test--) {
solve();
}
return 0;
}