HDOJ 題目3564 Another LIS(線段樹單點更新,LIS)
Another LIS
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1291 Accepted Submission(s): 451
Problem Description There is a sequence firstly empty. We begin to add number from 1 to N to the sequence, and every time we just add a single number to the sequence at a specific position. Now, we want to know length of the LIS (Longest Increasing Subsequence) after every time's add.
Input An integer T (T <= 10), indicating there are T test cases.
For every test case, an integer N (1 <= N <= 100000) comes first, then there are N numbers, the k-th number Xk means that we add number k at position Xk (0 <= Xk <= k-1).See hint for more details.
Output For the k-th test case, first output Case #k: in a separate line, then followed N lines indicating the answer. Output a blank line after every test case.
Sample Input
1
3
0 0 2
Sample Output
Case #1:
1
1
2
Hint
In the sample, we add three numbers to the sequence, and form three sequences.
a. 1
b. 2 1
c. 2 1 3
Author standy
Source 2010 ACM-ICPC Multi-University Training Contest(13)——Host by UESTC
Recommend zhouzeyong | We have carefully selected several similar problems for you: 3572 2389 3584 3293 1255 思路:就是從左插入找空位,從1~n用線段樹記錄他們的位置,然後再對他們的位置進行LIS就好 ac代碼
#include
#include
#define max(a,b) (a>b?a:b)
int a[100010];
int node[100010<<2],d[100010],len,dp[100010];
void build(int l,int r,int tr)
{
node[tr]=r-l+1;
if(l==r)
return;
int mid=(l+r)>>1;
build(l,mid,tr<<1);
build(mid+1,r,tr<<1|1);
node[tr]=node[tr<<1]+node[tr<<1|1];
}
int bin(int x)
{
int l=1,r=len;
while(l<=r)
{
int mid=(l+r)>>1;
if(x>dp[mid])
l=mid+1;
else
r=mid-1;
}
return l;
}
void insert(int pos,int num,int l,int r,int tr)
{
if(l==r)
{
d[num]=l;
node[tr]=0;
return;
}
int mid=(l+r)>>1;
node[tr]--;
if(pos<=node[tr<<1])
{
insert(pos,num,l,mid,tr<<1);
}
else
insert(pos-node[tr<<1],num,mid+1,r,tr<<1|1);
}
int main()
{
int t,c=0;
scanf(%d,&t);
while(t--)
{
int n;
scanf(%d,&n);
int i;
for(i=1;i<=n;i++)
{
scanf(%d,&a[i]);
dp[i]=0;
}
build(1,n,1);
for(i=n;i>0;i--)
{
insert(a[i]+1,i,1,n,1);
}
len=0;
/*for(i=1;i<=n;i++)
{
printf(%d
,d[i]);
}*/
printf(Case #%d:
,++c);
for(i=1;i<=n;i++)
{
int k=bin(d[i]);
len=max(len,k);
dp[k]=d[i];
printf(%d
,len);
}
printf(
);
}
}