Description
There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can't move on red tiles, he can move only on black tiles.Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers W and H; W and H are the numbers of tiles in the x- and y- directions, respectively. W and H are not more than 20.Output
For each data set, your program should output a line which contains the number of tiles he can reach from the initial tile (including itself).Sample Input
6 9 ....#. .....# ...... ...... ...... ...... ...... #@...# .#..#. 11 9 .#......... .#.#######. .#.#.....#. .#.#.###.#. .#.#..@#.#. .#.#####.#. .#.......#. .#########. ........... 11 6 ..#..#..#.. ..#..#..#.. ..#..#..### ..#..#..#@. ..#..#..#.. ..#..#..#.. 7 7 ..#.#.. ..#.#.. ###.### ...@... ###.### ..#.#.. ..#.#.. 0 0
Sample Output
45 59 6 13題解:本題還是DFS搜索(上下左右),只是增加一個計數器,計算可以走的地方的個數。 規定地圖中有可通行的位置,也有不可通行的位置,已知起點,求起點的與它相連成一片的部分,在這道題裡輸出相連的位置的數目。 從起點開始,遍歷每一個到達的點的四個方向(不再是八個),到達一個位置就將這個位置的字符變成不可走的'#',並且計數+1。其實就是計數將可走變成不可走的操作進行了多少次。 這樣可以不用擔心走過了還會重復。 AC 代碼:如果你看過我的上一篇你一定會懂
#include<cstdio> #include<cstring> char pic[110][110]; int m,n,total; int idx[110][110]; void dfs(int r,int c,int id) { if(r<0||r>=m||c<0||c>=n) return; if(idx[r][c]==666||pic[r][c]!='.') return; idx[r][c]=id; total++; for(int dr=-1; dr<=1; dr++) for(int dc=-1; dc<=1; dc++) if(dr==0||dc==0) dfs(r+dr,c+dc,id); } int main() { int i,j; while(scanf("%d%d",&n,&m)==2&&m&&n) { for(i =0; i<m; i++) scanf("%s",pic[i]); memset(idx,0,sizeof(idx)); total=0; for(i=0; i<m; i++) for(j=0; j<n; j++) { if(pic[i][j]=='@') { pic[i][j]='.'; dfs(i,j,666); } } printf("%d\n",total); } return 0; }
這個是我在其他博客上看得到的方法,用#填充,可以一試!
#include <iostream> using namespace std; char a[25][25]; int n,m,total; int dr[4] = {0,1,0,-1};//行變化 int dc[4] = {1,0,-1,0};//列變化 //上面的原來一直不會用,知道的話非常方便 bool judge(int x,int y) { if(x<1 || x>n || y<1 || y>m) return 1; if(a[x][y]=='#') return 1; return 0; } void dfs(int r,int c) { total++; a[r][c]='#'; //走過一次,“。”變為“#”,避免重復 for(int k=0; k<4; k++) { int lr = r + dr[k]; int lc = c + dc[k]; if(judge(lr,lc)) continue; dfs(lr,lc); } } int main() { while(cin>>m>>n&&m&&n) { int i,j,x,y; total=0; for(i=1; i<=n; i++) for(j=1; j<=m; j++) { cin>>a[i][j]; if(a[i][j]=='@') //這裡必須用變量x,y x=i,y=j; } dfs(x,y); cout<<total<<endl; } return 0; }