程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> C++入門知識 >> HDU 5113 Black And White(DFS+剪枝)

HDU 5113 Black And White(DFS+剪枝)

編輯:C++入門知識

HDU 5113 Black And White(DFS+剪枝)


 

 

題面:

 

Black And White

Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others)
Total Submission(s): 1336 Accepted Submission(s): 350
Special Judge


Problem Description In mathematics, the four color theorem, or the four color map theorem, states that, given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color.
— Wikipedia, the free encyclopedia

In this problem, you have to solve the 4-color problem. Hey, I’m just joking.

You are asked to solve a similar problem:

Color an N × M chessboard with K colors numbered from 1 to K such that no two adjacent cells have the same color (two cells are adjacent if they share an edge). The i-th color should be used in exactly ci cells.

Matt hopes you can tell him a possible coloring.
Input The first line contains only one integer T (1 ≤ T ≤ 5000), which indicates the number of test cases.

For each test case, the first line contains three integers: N, M, K (0 < N, M ≤ 5, 0 < K ≤ N × M ).

The second line contains K integers ci (ci > 0), denoting the number of cells where the i-th color should be used.

It’s guaranteed that c1 + c2 + · · · + cK = N × M .

Output For each test case, the first line contains “Case #x:”, where x is the case number (starting from 1).

In the second line, output “NO” if there is no coloring satisfying the requirements. Otherwise, output “YES” in one line. Each of the following N lines contains M numbers seperated by single whitespace, denoting the color of the cells.

If there are multiple solutions, output any of them.
Sample Input
4
1 5 2
4 1
3 3 4
1 2 2 4
2 3 3
2 2 2
3 2 3
2 2 2

Sample Output
Case #1:
NO
Case #2:
YES
4 3 4
2 1 2
4 3 4
Case #3:
YES
1 2 3
2 3 1
Case #4:
YES
1 2
2 3
3 1

Source 2014ACM/ICPC亞洲區北京站

解題:
因為n,m比較小,會想到搜索,但直接超時了。需要加一個剪枝,因為當剩下的容量為n時,任意一種顏色最多只能為(n+1)/2。當任意一種顏色數量超過這個值時,就返回。這個優化已經很厲害了。我又加了一個沒什麼用的優化,main函數中出現某兩種顏色相同時,不用重復計算。

代碼:
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define LL long long
using namespace std;
int map [7][7],color[30];
int n,m,t,k,sz,amount,tmp;
bool flag=false;
void init()
{
	for(int i=0;i<7;i++)
		map[0][i]=-1;
	for(int j=1;j<7;j++)
		map[j][0]=-1;
}
void dfs(int x,int y,int typ,int lef)
{
  tmp=(lef+1)/2;
  for(int i=1;i<=k;i++)
  {
	  if(color[i]>tmp)
	  return;
  }
  if(flag)return;
  if(color[typ]==0)return;
  if(map[x-1][y]!=typ&&map[x][y-1]!=typ)
  {
	  map[x][y]=typ;
	  color[typ]--;
	  if(x==n&&y==m)
	  {
		  flag=true;
		  return;
	  }
	  else if(y==m)
	  {
		  tmp=0;
		  for(int i=1;i<=k;i++)
		  {
			  if(color[i])tmp++;
		  }
		  if(tmp==1)
		  {
			  if(m!=1)
			  {
				  color[typ]++;
				  return;
			  }
		  }
		  for(int i=1;i<=k;i++)
		  {
			  if(color[i])
				  dfs(x+1,1,i,lef-1);
		  }
	  }
	  else
	  {
		  for(int i=1;i<=k;i++)
		  {
			  if(color[i])
			  {
				  dfs(x,y+1,i,lef-1);
			  }
		  }
	  }
	  color[typ]++;
  }
  return;
}
int main()
{
	init();
	scanf(%d,&t);
	for(int i=1;i<=t;i++)
	{
	  set  cnt;
	  printf(Case #%d:
,i);
      scanf(%d%d%d,&n,&m,&k);
	  amount=(n*m+1)/2;
	  flag=true;
	  if(k==1)
	  {
		  if(n*m!=1)
		  flag=false;
	  }
	  for(int j=1;j<=k;j++)
	  {
		  scanf(%d,&color[j]);
          if(color[j]>amount)
			  flag=false;
	  }
	  if(flag)
	  {
	    flag=false;
	    for(int j=1;j<=k;j++)
	    {
		  sz=cnt.size();
		  if(color[j])
		  {
			  cnt.insert(color[j]);
			  if(cnt.size()>sz)
			  dfs(1,1,j,n*m);
		  }
	    }
	   }
	  if(flag)
	  {
		  printf(YES
);
		  for(int j=1;j<=n;j++)
		  {
            printf(%d,map[j][1]);
			for(int k=2;k<=m;k++)
				printf( %d,map[j][k]);
			printf(
);
		  }
	  }
	  else
	  {
		  printf(NO
);
	  }
	}
	return 0;
}



 

 

 

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved