Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST’s total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hint:
Try to utilize the property of a BST.Show More Hint
Credits:
Special thanks to @ts for adding this problem and creating all test cases.
兩種思路:
1.空間換時間
BST的特性是,如果按照中序排列,得到的遞增序;所以可以使用一個stack進行中序遍歷,直到找到第K個元素;
2. 樹樹的結點數
對於每個節點root,計算以它為根節點的樹的節點數,計作S。
如果S==K,返回root->val;
如果S > K,在root的左子樹裡面查找第K小元素;
如果S
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int kthSmallest(TreeNode root, int k) {
Stack s = new Stack<>();
TreeNode p=root;
s.push(p);
int cnt=0;
do{
while(p!=null){
s.push(p);
p=p.left;
}
TreeNode top=s.pop();
cnt++;
if(cnt==k){
return top.val;
}
p=top.right;
}while(!s.empty());
return 0;
}
}
思路2代碼:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
int left=findNodesSum(root->left);
if(left+1==k){
return root->val;
}else if(left+1right,k-left-1);
}else{
return kthSmallest(root->left,k);
}
}
int findNodesSum(TreeNode* root){
if(!root){
return 0;
}
int sum = findNodesSum(root->left)+findNodesSum(root->right)+1;
return sum;
}
};