Word Break
Given a string s and a dictionary of words dict, determine if s can be segmented into a space-separated sequence of one or more dictionary words.
For example, given
s = "leetcode"
,
dict = ["leet", "code"]
.
Return true because "leetcode"
can be segmented as "leet code"
.
解題思路:
解法1,回溯法。但會超時。其時間復雜度為len!
class Solution { public: bool wordBreak(string s, unordered_set解法2,動態規劃。對於d[i]表示字符串S[0,..., i]費否能夠被字典拼接而成。於是有& wordDict) { return helper(s, wordDict); } bool helper(string s, unordered_set & wordDict){ if(s==""){ return true; } int len = s.length(); for(int i=1; i<=len; i++){ if(wordDict.find(s.substr(0, i))!=wordDict.end() && helper(s.substr(i), wordDict)){ return true; } } return false; } };
d[i] = true, 如果s[0,...i]在字典裡面
d[i] = true, 如果存在k,0
d[i] = false, 不存在這樣的k
代碼如下:
class Solution { public: bool wordBreak(string s, unordered_set& wordDict) { int len = s.length(); if(len == 0){ return true; } bool d[len]; memset(d, 0, len * sizeof(bool)); if(wordDict.find(s.substr(0, 1)) == wordDict.end()){ d[0] = false; }else{ d[0] = true; } for(int i=1; i 時間復雜度為O(len^2)
另外,一個非常好的解法就是添加一個字符在s前面,使得代碼更加簡潔。
class Solution { public: bool wordBreak(string s, unordered_set& wordDict) { s = "#" + s; int len = s.length(); bool d[len]; memset(d, 0, len * sizeof(bool)); d[0] = true; for(int i=1; i