程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> C++入門知識 >> Aquarium Tank(csu1634+幾何+二分)Contest2087,csu1634contest2087

Aquarium Tank(csu1634+幾何+二分)Contest2087,csu1634contest2087

編輯:C++入門知識

Aquarium Tank(csu1634+幾何+二分)Contest2087,csu1634contest2087


 Aquarium Tank

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 15  Solved: 4
[Submit][Status][Web Board]

Description

You just bought an “artistic” aquarium tank that has an interesting shape, and you poured L litres of water into the tank. How high is the water in the tank?
When you look at this tank from one side, it has the shape of a convex polygon. This polygon has exactly two vertices on the table (y-coordinates are 0), and all other vertices have positive y-coordinates. There are also exactly two vertices with maximum y-coordinates, and water is poured into the opening between these two vertices. This aquarium tank has a depth of D centimetres. The tank is glued to the table, so no matter what shape it has, it keeps its position and does not tip over. All coordinates and lengths in this problem are given in centimetres. It should be noted that each cubic metre is equivalent to 1 000 litres.
An illustration showing the configuration of the tank of the first sample input is given below:

Input

The input consists of a single test case. The first line contains an integer N (4 ≤ N ≤ 100) giving the number of vertices in the polygon. he next line contains two integers D and L, where 1 ≤ D ≤ 1000 is he depth of the aquarium tank and 0  L  2 000 is the number of litres f water to pour into the tank. The next N lines each contains two integers, giving the (x, y) coordinates of the vertices of the convex polygon in counterclockwise order. The absolute values of x and y are at most 1 000. You may assume that the tank has a positive capacity, and you never pour more water than the tank can hold.

 

Output

Print the height of the water (in centimetres) in the aquarium tank on a line to 2 decimal places.

 

Sample Input

4
30 50
20 0
100 0
100 40
20 40

Sample Output

20.83

HINT

 

Source



 

題意:有一個橫放是多邊形的稜柱。問L升水,注入其中,容器的深度是多少。

思路:稜柱的體積等於底面積成高,so、、、我可以二分多邊形的高度(用平行與X軸的直線求切割多邊形)取下半部分是面積;

坑!比賽的時候,我以為第一組邊一定是在x軸上的。。。o(︶︿︶)o 唉,結果是一定有一組邊在x軸上,但不一定是第一組!。。。

 

轉載請注明出處:尋找&星空の孩子 

題目鏈接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1634

 

 

比較亂,沒整理!

  1 #include<cstdio>
  2 #include<cmath>
  3 #include<iostream>
  4 #define PI acos(-1.0)
  5 using namespace std;
  6  
  7 struct Point
  8 {
  9     double x,y;
 10     Point(double x=0,double y=0):x(x),y(y) {} 
 11  
 12 };
 13  
 14 double hmax;
 15 double D,L;
 16  
 17 typedef Point Vector;//Vector只是Point的別名
 18  
 19 //向量+向量=向量;    向量+點=點
 20 Vector operator + (Vector A,Vector B)
 21 {
 22     return Vector(A.x+B.x,A.y+B.y);
 23 }
 24  
 25 //點-點=向量
 26 Vector operator - (Point A,Point B)
 27 {
 28     return Vector(A.x-B.x,A.y-B.y);
 29 }
 30  
 31 //向量*數=向量
 32 Vector operator * (Vector A,double p)
 33 {
 34     return Vector(A.x*p,A.y*p);
 35 }
 36  
 37 //向量/數=向量
 38 Vector operator / (Vector A,double p)
 39 {
 40     return Vector(A.x/p,A.y/p);
 41 }
 42  
 43  
 44 //
 45 bool operator < (const Point& a,const Point& b)
 46 {
 47     return a.x<b.x||(a.x==b.x && a.y<b.y);
 48 }
 49  
 50 //
 51 const double eps = 1e-8;
 52 //三態函數
 53 int dcmp(double x)
 54 {
 55     if(fabs(x)<eps)return 0;
 56     else return x < 0 ? -1 : 1;
 57 }
 58 //相等
 59 bool operator == (const Point& a,const Point& b)
 60 {
 61     return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0;
 62 }
 63  
 67 double Dot(Vector A,Vector B)
 68 {
 69     return A.x*B.x+A.y*B.y;
 70 }
 71 double length(Vector A)
 72 {
 73     return sqrt(Dot(A,A));
 74 }
 75 double Angle(Vector A,Vector B)
 76 {
 77     return acos(Dot(A,B)/length(A)/length(B));
 78 }
 79  
 84 double Cross(Vector A,Vector B)
 85 {
 86     return A.x*B.y-B.x*A.y;
 87 }
 88 double Area2(Point A,Point B,Point C)
 89 {
 90     return Cross(B-A,C-A);
 91 }
 92  
 93 double PArea(Point *p,int n)
 94 {
 95     double area=0;
 96     for(int i=0; i<n; i++)
 97     {
 98         area+=Cross(p[i],p[(i+1)%n]);
 99   //      printf("area=%f\n",area);
100     }
101     return fabs(area/2);
102 }
103  
104 /*******兩直線交點*******/
105 //調用前確保兩條直線P+tv和Q+tv有唯一交點,當且僅當Cross(v,w)非0;
106 Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
107 {
108     Vector u=P-Q;
109   //  printf("P=(%f,%f),v=(%f,%f),Q=(%f,%f),w=(%f,%f)\n",P.x,P.y,v.x,v.y,Q.x,Q.y,w.x,w.y);
110  //   if(Cross(v,w))
111  //   {
112   //      double t=Cross(w,u)/Cross(v,w);//精度高的時候,考慮自定義分數類
113    //     return P+v*t;
114   //  }
115 //    else
116 //       return ;
117 //printf("t=   %lf\t%lf",Cross(w,u),Cross(v,w));
118     return P+v*Cross(w,u)/Cross(v,w);
119 }
120 //輸入函數
121 Point read_point(Point &P)
122 {
123     scanf("%lf%lf",&P.x,&P.y);
124     hmax=max(hmax,P.y);
125     return P;
126 }
127 Point get_point(Point a, Point b, double y0)
128 {
129     if(fabs(a.x - b.x) < eps) return Point(a.x, y0);
130     double bi = (y0 - a.y) / (b.y - a.y);
131     return Point(a.x + bi * (b.x - a.x), a.y + bi * (b.y - a.y));
132 }
133 int main()
134 {
135     Point po[105],Q[105];
136     int T,n,q,i;
137  
138   //  freopen("debug//secret-tank-03.in","r",stdin);
139     while(scanf("%d",&n)!=EOF)
140     {
141         scanf("%lf%lf",&D,&L);
142         hmax=0;
143         for(i=0; i<n; i++)
144         {
145             read_point(po[i]);
146   //          printf("----[%lf]\n",po[i]);
147         }
148    //     po[n]=po[0];
149  //       po[n+1]=po[1];
150   //      Q[0]=po[0];
151   //      Q[1]=po[1];
152     //   printf("Q[%d]=%lf\n\n",1,po[1]);
153         double d=0,h=hmax;
154         while(h-d>eps)
155         {
156             q=0;
157             int per=n-1;
158             double m=(d+h)/2;
159         //    printf("m=%lf\n",m);
160         //    getchar();
161             Point M(0,m);
162             Vector w(1,0);
163             for(int i=0; i<n; i++)
164             {
165       //          if(i==0&&(m-po[i].y)>eps){Q[q++]=po[i];continue;}
166  
167  
168   //              else if((m-po[i].y)==eps)
169   //              {
170   //                  Q[q++]=po[i];
171   //              }
172                 if((m-po[i].y)*(m-po[per].y)<eps)
173                 {
174                  //   printf("------------------------------------------------------\n");
175   //                  Vector PP=po[i]-po[per];
176    //                 Q[q++]=GetLineIntersection(po[per],PP,M,w);
177                     Q[q++]=get_point(po[i],po[per],m);
178                 }
179                 if((m-po[i].y)>eps)
180                 {
181         //            if(i==1) Q[q++]=po[i-1];
182                     Q[q++]=po[i];
183                 }
184                 per=i;
185                // printf("Q[%d]=(%f,%f)\n",q-1,Q[q-1].x,Q[q-1].y);
186             }
187     //        Q[q]=Q[0];
188  //   if(m==20)
189    //        for(int i=0;i<q;i++)
190      //       {
191        //         printf("Q[%d]=(%f,%f)\n",i,Q[i].x,Q[i].y);
192          //   }
193             double area=PArea(Q,q);
194            // printf("L=%f\tV=%lf\tm=%lf\n",L*1000,area*D,m);
195             if(L*1000-area*D>eps) d=m;
196             else h=m;
197  
198         }
199         printf("%.2f\n",d);
200     }
201     return 0;
202 }
203  
204 /**************************************************************
205     Problem: 1634
206     User: aking2015
207     Language: C++
208     Result: Accepted
209     Time:0 ms
210     Memory:1496 kb
211 ****************************************************************/

 

 

 

好吧。發個整理過的。

  1 #include<cstdio>
  2 #include<cmath>
  3 #include<iostream>
  4 #define PI acos(-1.0)
  5 using namespace std;
  6  
  7 struct Point
  8 {
  9     double x,y;
 10     Point(double x=0,double y=0):x(x),y(y) {}
 11  
 12 };
 13  
 14 double hmax;
 15 double D,L;
 16  
 17 typedef Point Vector;
 18  
 19 Vector operator + (Vector A,Vector B)
 20 {
 21     return Vector(A.x+B.x,A.y+B.y);
 22 }
 23  
 24 Vector operator - (Point A,Point B)
 25 {
 26     return Vector(A.x-B.x,A.y-B.y);
 27 }
 28  
 29 Vector operator * (Vector A,double p)
 30 {
 31     return Vector(A.x*p,A.y*p);
 32 }
 33  
 34 Vector operator / (Vector A,double p)
 35 {
 36     return Vector(A.x/p,A.y/p);
 37 }
 38  
 39 bool operator < (const Point& a,const Point& b)
 40 {
 41     return a.x<b.x||(a.x==b.x && a.y<b.y);
 42 }
 43  
 44 const double eps = 1e-8;
 45  
 46 int dcmp(double x)
 47 {
 48     if(fabs(x)<eps)return 0;
 49     else return x < 0 ? -1 : 1;
 50 }
 51 bool operator == (const Point& a,const Point& b)
 52 {
 53     return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0;
 54 }
 55  
 56 double Dot(Vector A,Vector B)
 57 {
 58     return A.x*B.x+A.y*B.y;
 59 }
 60 double length(Vector A)
 61 {
 62     return sqrt(Dot(A,A));
 63 }
 64 double Angle(Vector A,Vector B)
 65 {
 66     return acos(Dot(A,B)/length(A)/length(B));
 67 }
 68  
 69 double Cross(Vector A,Vector B)
 70 {
 71     return A.x*B.y-B.x*A.y;
 72 }
 73 double Area2(Point A,Point B,Point C)
 74 {
 75     return Cross(B-A,C-A);
 76 }
 77  
 78 double PArea(Point *p,int n)
 79 {
 80     double area=0;
 81     for(int i=0; i<n; i++)
 82     {
 83         area+=Cross(p[i],p[(i+1)%n]);
 84     }
 85     return fabs(area/2);
 86 }
 87  
 88 Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
 89 {
 90     Vector u=P-Q;
 91     return P+v*Cross(w,u)/Cross(v,w);
 92 }
 93 Point read_point(Point &P)
 94 {
 95     scanf("%lf%lf",&P.x,&P.y);
 96     hmax=max(hmax,P.y);
 97     return P;
 98 }
 99 Point get_point(Point a, Point b, double y0)
100 {
101     if(fabs(a.x - b.x) < eps) return Point(a.x, y0);
102     double bi = (y0 - a.y) / (b.y - a.y);
103     return Point(a.x + bi * (b.x - a.x), a.y + bi * (b.y - a.y));
104 }
105 int main()
106 {
107     Point po[105],Q[105];
108     int T,n,q,i;
109     while(scanf("%d",&n)!=EOF)
110     {
111         scanf("%lf%lf",&D,&L);
112         hmax=0;
113         for(i=0; i<n; i++)
114         {
115             read_point(po[i]);
116         }
117         double d=0,h=hmax;
118         while(h-d>eps)
119         {
120             q=0;
121             int per=n-1;
122             double m=(d+h)/2;
123             Point M(0,m);
124             Vector w(1,0);
125             for(int i=0; i<n; i++)
126             {
127                 if((m-po[i].y)*(m-po[per].y)<eps)
128                 {
129                     Vector PP=po[i]-po[per];
130                     Q[q++]=GetLineIntersection(po[per],PP,M,w);
131                     //   Q[q++]=get_point(po[i],po[per],m);
132                 }
133                 if((m-po[i].y)>eps)
134                 {
135                     Q[q++]=po[i];
136                 }
137                 per=i;
138             }
139             double area=PArea(Q,q);
140             if(L*1000-area*D>eps) d=m;
141             else h=m;
142         }
143         printf("%.2f\n",d);
144     }
145     return 0;
146 }
147  
148 /**************************************************************
149     Problem: 1634
150     User: aking2015
151     Language: C++
152     Result: Accepted
153     Time:0 ms
154     Memory:1500 kb
155 ****************************************************************/

 

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved