Description
N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cowB.
Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
Output
* Line 1: A single integer representing the number of cows whose ranks can be determined
Sample Input
5 5 4 3 4 2 3 2 1 2 2 5
Sample Output
2
Source
題意:有n個牛,編號1~n。現給出m條關系:A B ,說明A比B厲害。現在問有多少個牛能被唯一確定(即這頭牛與n-1頭牛的關系是唯一確定的)。
解題:一頭牛如果能被唯一確定,那麼所有的點一定是一個連通塊,那麼就可能用到並查集 來判斷。再接下來就是拓撲排序了。具體看代碼。
#include#include const int N = 105; bool mapt[N][N],path[N][N]; int n,in[N],father[N]; void init() { for(int i=1;i<=n;i++) { father[i]=i; in[i]=0; for(int j=1;j<=n;j++) mapt[i][j]=path[i][j]=0; path[i][i]=1; } } int findroot(int x) { if(x!=father[x]) father[x]=findroot(father[x]); return father[x]; } void setroot(int x,int y) { x=findroot(x); y=findroot(y); father[x]=y; } int tope() { int a[N],k=0,l=0,ans=0; for(int i=1;i<=n;i++) if(in[i]==0) a[k++]=i; while(l 0) { init(); while(m--) { scanf("%d%d",&a,&b); setroot(a,b); if(mapt[a][b]==0) mapt[a][b]=1,in[b]++; } int k=0; for(int i=1;i<=n;i++) if(father[i]==i) k++; if(k>1)//說明所有的點不是在一個連通塊內,所有的點都不能被確定 printf("0\n"); else printf("%d\n",tope()); } }