Submit Status
Description
Your are given a sequence of integers a1, …, an. Find an arithmetic progression b1, …, bn for which the value ∑( ai ? bi) 2 is minimal. The elements of the progression can be non-integral.Input
The first line contains the number n of elements in the sequence (2 ≤ n ≤ 10 4). In the second line you are given the integers a1, …, an; their absolute values do not exceed 10 4.Output
Output two numbers separated with a space: the first term of the required arithmetic progression and its difference, with an absolute or relative error of at most 10 ?6. It is guaranteed that the answer is unique for all input data.Sample Input
4 0 6 10 15
0.400 4.900
4 -2 -2 -2 -2
-2 0
arithmetic progression 等差數列的通式an=a1+(n-1)*d,即an=(a1-d)+n*d 是直線方程的形式,而(i,mi)是分布在直線兩邊的點,要求直線的 k=d,b=a1-d,於是想到最小二乘法,對Y=kX+b , 有 k=((XY)平--X平*Y平)/((X^2)平--(X平)^2), b=Y平--kX平。按公式求就好了。
#include#include using namespace std; const int MAXN = 10005; double a[MAXN]; int main() { int n; while (cin >> n) { for (int i = 1; i <= n; i++) cin >> a[i]; double xy=0, x=0, y=0, x2=0; for (int i = 1; i <= n; i++) { xy = xy + a[i] * i; x = x + i; y = y + a[i]; x2 = x2 + i*i; } double k = (xy/n -(x/n)*(y/n)) / (x2/n - (x/n)*(x/n)); double b = y / n - k*(x / n); double a1 = b + k; double d = k; cout <