題目鏈接:點擊打開鏈接
A number is called a Mirror number if on lateral inversion, it gives the same number i.e it looks the same in a mirror. For example 101 is a mirror number while 100 is not.
Given two numbers a and b, find the number of mirror numbers in between them (inclusive of a and b).
First line contains T, number of testcases <= 10^5.
Each testcase is described in a single line containing two numbers a and b.
0 <= a<=b <= 10^44
For each test case print the number of mirror numbers between a and b in a single line.
Input: 3 0 10 10 20 1 4 Output: 3 1 1
題意:
給定一個區間[l,r] 問區間內有多少個數是中心對稱的。
首先能對稱的數一定只由0 1 8組成。
dp[cur][start][flag] 表示長度為start的數字,已經尋找了start-cur+1位, 是或不是鏡像對稱數字的個數
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.text.DecimalFormat; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.Deque; import java.util.HashMap; import java.util.Iterator; import java.util.LinkedList; import java.util.Map; import java.util.PriorityQueue; import java.util.Scanner; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; import java.util.Queue; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; public class Main { boolean three(char c){return c=='0'||c=='1'||c=='8';} boolean three_num(int c){return c==0||c==1||c==8;} int[] num = new int[N], tmp = new int[N]; long[][][] dp = new long[N][N][2]; //cur:當前位數,start:鏡像回文判斷的開始地方,flag:是否是鏡像回文,limit:邊界判斷 long dfs(int cur, int start, int flag, boolean limit){ if(cur==-1)return flag; if(!limit && dp[cur][start][flag] != -1)return dp[cur][start][flag]; long ans = 0; int end = limit?num[cur]:9; for(int i = 0; i <= end; i++) if(three_num(i)) { boolean st = (cur == start && i == 0); int newFlag = flag; if(flag > 0){ if(!st && cur<(start+1)/2) newFlag = (tmp[start-cur] == i)?1:0; } tmp[cur] = i; ans += dfs(cur-1, st?start-1:start, newFlag, limit&&(i==end)); } if(!limit)dp[cur][start][flag] = ans; return ans; } long solve(String x){ for(int i = 0; i < x.length(); i++) num[i] = x.charAt(x.length()-1-i) - '0'; num[x.length()] = 0; return dfs(x.length()-1, x.length()-1, 1, true); } void work() throws Exception{ for(int i = 0; i < N; i++)for(int j = 0; j < N; j++)Arrays.fill(dp[i][j], -1); int T = Int(); while(T-->0){ String l = Next(), r = Next(); long ans = 1; for(int i = 0; i < l.length(); i++) if(!three(l.charAt(i)) || l.charAt(i)!=l.charAt(l.length()-1-i))ans = 0L; out.println((solve(r)-solve(l)+ans)); } } public static void main(String[] args) throws Exception{ Main wo = new Main(); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // in = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt")))); // out = new PrintWriter(new File("output.txt")); wo.work(); out.close(); } static int N = 50; static int M = N*N * 10; DecimalFormat df=new DecimalFormat("0.0000"); static long inf = 1000000000000L; static long inf64 = (long) 1e18*2; static double eps = 1e-8; static double Pi = Math.PI; static int mod = 2520 ; private String Next() throws Exception{ while (str == null || !str.hasMoreElements()) str = new StringTokenizer(in.readLine()); return str.nextToken(); } private int Int() throws Exception{ return Integer.parseInt(Next()); } private long Long() throws Exception{ return Long.parseLong(Next()); } StringTokenizer str; static BufferedReader in; static PrintWriter out; /* class Edge{ int from, to, nex; Edge(){} Edge(int from, int to, int nex){ this.from = from; this.to = to; this.nex = nex; } } Edge[] edge = new Edge[M<<1]; int[] head = new int[N]; int edgenum; void init_edge(){for(int i = 0; i < N; i++)head[i] = -1; edgenum = 0;} void add(int u, int v){ edge[edgenum] = new Edge(u, v, head[u]); head[u] = edgenum++; }/**/ int upper_bound(int[] A, int l, int r, int val) {// upper_bound(A+l,A+r,val)-A; int pos = r; r--; while (l <= r) { int mid = (l + r) >> 1; if (A[mid] <= val) { l = mid + 1; } else { pos = mid; r = mid - 1; } } return pos; } int Pow(int x, int y) { int ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; y >>= 1; x = x * x; } return ans; } double Pow(double x, int y) { double ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; y >>= 1; x = x * x; } return ans; } int Pow_Mod(int x, int y, int mod) { int ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; ans %= mod; y >>= 1; x = x * x; x %= mod; } return ans; } long Pow(long x, long y) { long ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; y >>= 1; x = x * x; } return ans; } long Pow_Mod(long x, long y, long mod) { long ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; ans %= mod; y >>= 1; x = x * x; x %= mod; } return ans; } int Gcd(int x, int y){ if(x>y){int tmp = x; x = y; y = tmp;} while(x>0){ y %= x; int tmp = x; x = y; y = tmp; } return y; } long Gcd(long x, long y){ if(x>y){long tmp = x; x = y; y = tmp;} while(x>0){ y %= x; long tmp = x; x = y; y = tmp; } return y; } int Lcm(int x, int y){ return x/Gcd(x, y)*y; } long Lcm(long x, long y){ return x/Gcd(x, y)*y; } int max(int x, int y) { return x > y ? x : y; } int min(int x, int y) { return x < y ? x : y; } double max(double x, double y) { return x > y ? x : y; } double min(double x, double y) { return x < y ? x : y; } long max(long x, long y) { return x > y ? x : y; } long min(long x, long y) { return x < y ? x : y; } int abs(int x) { return x > 0 ? x : -x; } double abs(double x) { return x > 0 ? x : -x; } long abs(long x) { return x > 0 ? x : -x; } boolean zero(double x) { return abs(x) < eps; } double sin(double x){return Math.sin(x);} double cos(double x){return Math.cos(x);} double tan(double x){return Math.tan(x);} double sqrt(double x){return Math.sqrt(x);} }