Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10096 Accepted: 7208
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn ? 1 + Fn ? 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number ?1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
Stanford Local 2006
[Submit] [Go Back] [Status] [Discuss]
通過這道題,練習了下矩陣快速冪的做法,還有學到了斐波那契數列的快速求法
AC代碼:
#include#include #include #include using namespace std; const int MOD = 10000; struct matrix { //矩陣 int m[2][2]; }ans; matrix base = {1, 1, 1, 0}; matrix multi(matrix a, matrix b) { //矩陣相乘,返回一個矩陣 matrix tmp; for(int i = 0; i < 2; i++) { for(int j = 0; j < 2; j++) { tmp.m[i][j] = 0; for(int k = 0; k < 2; k++) tmp.m[i][j] = (tmp.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD; } } return tmp; } int matrix_pow(matrix a, int n) { //矩陣快速冪,矩陣a的n次冪 ans.m[0][0] = ans.m[1][1] = 1; //初始化為單位矩陣 ans.m[0][1] = ans.m[1][0] = 0; while(n) { if(n & 1) ans = multi(ans, a); a = multi(a, a); n >>= 1; } return ans.m[0][1]; } int main() { int n; while(scanf("%d", &n), n != -1) { printf("%d\n", matrix_pow(base, n)); } return 0; }