程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> C++入門知識 >> hdu4965---Fast Matrix Calculation(矩陣)

hdu4965---Fast Matrix Calculation(矩陣)

編輯:C++入門知識

hdu4965---Fast Matrix Calculation(矩陣)


Problem Description
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her.

Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.

Step 1: Calculate a new N*N matrix C = A*B.
Step 2: Calculate M = C^(N*N).
Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’.
Step 4: Calculate the sum of all the elements in M’.

Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.

Input
The input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.

The end of input is indicated by N = K = 0.

Output
For each case, output the sum of all the elements in M’ in a line.

Sample Input

4 2 5 5 4 4 5 4 0 0 4 2 5 5 1 3 1 5 6 3 1 2 3 0 3 0 2 3 4 4 3 2 2 5 5 0 5 0 3 4 5 1 1 0 5 3 2 3 3 2 3 1 5 4 5 2 0 0

Sample Output

14 56

Author
SYSU

Source
2014 Multi-University Training Contest 9

Recommend
We have carefully selected several similar problems for you: 5189 5188 5186 5185 5184

直接按題意的做法,搞出一個1000*1000的矩陣,光一次乘法就超時了

注意到C = A*B
C * C * ….C = A(B*A) (B*A) ….. *B
其中B*A是一個k*k的矩陣,做n^2 - 1次的快速冪,這樣就把時間控制下來了

/*************************************************************************
    > File Name: hdu4965.cpp
    > Author: ALex
    > Mail: [email protected] 
    > Created Time: 2015年03月16日 星期一 17時51分56秒
 ************************************************************************/

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;

const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair  PLL;

int A[1010][10];
int B[10][1010];
int D[1010][1010];
int ans[1010][1010];

int K;

class MARTIX
{
    public:
        int mat[10][10];
        MARTIX()
        {
            memset (mat, 0, sizeof(mat));
        }
        MARTIX operator * (const MARTIX &b)const;
        MARTIX& operator = (const MARTIX &b);
};

MARTIX MARTIX :: operator * (const MARTIX &b)const
{
    MARTIX C;
    for (int i = 0; i < K; ++i)
    {
        for (int j = 0; j < K; ++j)
        {
            C.mat[i][j] = 0;
            for (int k = 0; k < K; ++k)
            {
                C.mat[i][j] += this -> mat[i][k] * b.mat[k][j];
                C.mat[i][j] %= 6;
            }
        }
    }
    return C;
}

MARTIX& MARTIX :: operator = (const MARTIX &b)
{
    for (int i = 0; i < K; ++i)
    {
        for (int j = 0; j < K; ++j)
        {
            this -> mat[i][j] = b.mat[i][j];
        }
    }
    return *this;
}

MARTIX fastpow(MARTIX A, int n)
{
    MARTIX ans;
    for (int i = 0; i < K; ++i)
    {
        ans.mat[i][i] = 1;
    }
    while (n)
    {
        if (n & 1)
        {
            ans = ans * A;
        }
        n >>= 1;
        A = A * A;
    }
    return ans;
}

int main()
{
    int n;
    while (~scanf("%d%d", &n, &K))
    {
        if (!n && !K)
        {
            break;
        }
        for (int i = 0; i < n; ++i)
        {
            for (int j = 0; j < K; ++j)
            {
                scanf("%d", &A[i][j]);
            }
        }
        for (int i = 0; i < K; ++i)
        {
            for (int j = 0; j < n; ++j)
            {
                scanf("%d", &B[i][j]);
            }
        }
        MARTIX C;
        for (int i = 0; i < K; ++i)
        {
            for (int j = 0; j < K; ++j)
            {
                for (int k = 0; k < n; ++k)
                {
                    C.mat[i][j] += B[i][k] * A[k][j];
                    C.mat[i][j] %= 6;
                }
            }
        }
        C = fastpow(C, n * n - 1);
        for (int i = 0; i < n; ++i)
        {
            for (int j = 0; j < K; ++j)
            {
                D[i][j] = 0;
                for (int k = 0; k < K; ++k)
                {
                    D[i][j] += A[i][k] * C.mat[k][j];
                    D[i][j] %= 6;
                }
            }
        }
        int res = 0;
        for (int i = 0; i < n; ++i)
        {
            for (int j = 0; j < n; ++j)
            { 
                ans[i][j] = 0;
                for (int k = 0; k < K; ++k)
                {
                    ans[i][j] += D[i][k] * B[k][j];
                    ans[i][j] %= 6;
                }
                res += ans[i][j]; 
            }
        }
        printf("%d\n", res);
    }
    return 0;
}

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved