Description
Biologists finally invent techniques of repairing DNA that contains segments causing kinds of inherited diseases. For the sake of simplicity, a DNA is represented as a string containing characters 'A', 'G' , 'C' and 'T'. The repairing techniques are simply to change some characters to eliminate all segments causing diseases. For example, we can repair a DNA "AAGCAG" to "AGGCAC" to eliminate the initial causing disease segments "AAG", "AGC" and "CAG" by changing two characters. Note that the repaired DNA can still contain only characters 'A', 'G', 'C' and 'T'.
You are to help the biologists to repair a DNA by changing least number of characters.
Input
The input consists of multiple test cases. Each test case starts with a line containing one integers N (1 ≤ N ≤ 50), which is the number of DNA segments causing inherited diseases.The last test case is followed by a line containing one zeros.
Output
For each test case, print a line containing the test case number( beginning with 1) followed by theSample Input
2 AAA AAG AAAG 2 A TG TGAATG 4 A G C T AGT 0
Sample Output
Case 1: 1 Case 2: 4 Case 3: -1
對給出的得病的串進行自動機構造,dp[i][j]對應了走i步從根到達第j個節點的最小值。
#include#include #include #include using namespace std ; #define INF 0x3f3f3f3f struct node{ int flag , id ; node *next[4] , *fail ; } tree[2100] ; queue que ; int num , dp[1100][2100] ; char str[2100] ; char c[5] = "ACGT" ; node *newnode() { node *p = &tree[num] ; p->flag = 0 ; p->id = num++ ; p->fail = NULL ; for(int i = 0 ; i < 4 ; i++) p->next[i] = NULL ; return p ; } void settree(char *s,node *rt) { int i , k , l = strlen(s) ; node *p = rt ; for(i = 0 ; i < l ; i++) { for(k = 0 ; k < 4 ; k++) if( s[i] == c[k] ) break ; if( p->next[k] == NULL ) p->next[k] = newnode() ; p = p->next[k] ; } p->flag = 1 ; return ; } void setfail(node *rt) { node *p = rt , *temp ; p->fail = NULL; while( !que.empty() ) que.pop() ; que.push(p) ; while( !que.empty() ) { p = que.front() ; que.pop() ; for(int i = 0 ; i < 4 ; i++) { if( p->next[i] ) { temp = p->fail ; while( temp && !temp->next[i] ) temp = temp->fail ; p->next[i]->fail = temp ? temp->next[i] : rt ; que.push(p->next[i]) ; if( temp && temp->flag ) p->flag = 1 ; } else p->next[i] = p == rt ? rt : p->fail->next[i] ; } } return ; } int query(char *s,node *rt) { int i , j , k , l = strlen(s) , flag ; memset(dp,INF,sizeof(dp)) ; dp[0][0] = 0 ; for(i = 0 ; i < l ; i++) { for(j = 0 ; j < num ; j++) { for(k = 0 ; k < 4 ; k++) { if( tree[j].next[k]->flag ) continue ; if( s[i] == c[k] ) dp[i+1][ tree[j].next[k]->id ] = min( dp[i][j] , dp[i+1][ tree[j].next[k]->id ] ) ; else dp[i+1][ tree[j].next[k]->id ] = min( dp[i][j]+1 , dp[i+1][ tree[j].next[k]->id ] ) ; } } /*for(j = 0 ; j < num ; j++) printf("%d ", dp[i+1][j]) ; printf("\n") ;*/ } int ans = INF ; for(i = 0 ; i < num ; i++) ans = min(ans,dp[l][i]) ; if( ans == INF ) ans = -1 ; return ans ; } int main() { int i , n , temp = 1 ; node *rt ; while( scanf("%d", &n) && n ) { num = 0 ; rt = newnode() ; for(i = 0 ; i < n ; i++) { scanf("%s", str) ; settree(str,rt) ; } setfail(rt) ; scanf("%s", str) ; printf("Case %d: %d\n", temp++ , query(str,rt) ) ; } return 0 ; }