題目鏈接:點擊打開鏈接
題意:給定常數d 和 n,表示n個點的樹,每個點有點權
問:有多少個點集使得點集中的點兩兩可達且最大點權-最小點權<=d
思路:
對於每個點,計算包含這個點且這個點作為點集中的最小點權時的個數,枚舉每個點。
import java.io.PrintWriter; import java.text.DecimalFormat; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.Deque; import java.util.HashMap; import java.util.Iterator; import java.util.LinkedList; import java.util.Map; import java.util.PriorityQueue; import java.util.Scanner; import java.util.Stack; import java.util.TreeMap; import java.util.TreeSet; import java.util.Queue; public class Main { int n, d; int[] a = new int[N]; int ad(int x, int y){ x += y; if(x>=mod)x %= mod; return x; } int mul(int x, int y){ long xx = (long)x*(long)y; if(xx>=mod) xx %= mod; return (int)xx; } int dfs(int u, int fa, int dep){ int ans = 1; for(int i = head[u]; i!=-1; i = edge[i].nex){ int v = edge[i].to; if((v == fa)||(a[v]>a[dep]||(a[v]==a[dep]&&v>dep))||(a[dep]-a[v]>d)) continue; ans = mul(ans, dfs(v, u, dep)+1); } return ans; } void input(){ d = cin.nextInt(); n = cin.nextInt(); for(int i = 1; i <= n; i++) a[i] = cin.nextInt(); init_edge(); for(int i = 1, u, v; i < n; i++){ u = cin.nextInt(); v = cin.nextInt(); add(u, v); add(v, u); } } void work() { input(); int ans = 0; for(int i = 1; i <= n; i++) ans = ad(ans, dfs(i, i, i)); out.println(ans%mod); } Main() { cin = new Scanner(System.in); out = new PrintWriter(System.out); } public static void main(String[] args) { Main e = new Main(); e.work(); out.close(); } public Scanner cin; public static PrintWriter out; static int N = 2005; static int M = 2005; DecimalFormat df=new DecimalFormat("0.0000"); static int inf = (int) 1e9 + 7; static long inf64 = (long) 1e18; static double eps = 1e-8; static double Pi = Math.PI; static int mod = 1000000007 ; class Edge{ int from, to, nex; Edge(){} Edge(int from, int to, int nex){ this.from = from; this.to = to; this.nex = nex; } } Edge[] edge = new Edge[M<<1]; int[] head = new int[N]; int edgenum; void init_edge(){for(int i = 0; i < N; i++)head[i] = -1; edgenum = 0;} void add(int u, int v){ edge[edgenum] = new Edge(u, v, head[u]); head[u] = edgenum++; } int Pow(int x, int y) { int ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; y >>= 1; x = x * x; } return ans; } double Pow(double x, int y) { double ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; y >>= 1; x = x * x; } return ans; } int Pow_Mod(int x, int y, int mod) { int ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; ans %= mod; y >>= 1; x = x * x; x %= mod; } return ans; } long Pow(long x, long y) { long ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; y >>= 1; x = x * x; } return ans; } long Pow_Mod(long x, long y, long mod) { long ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; ans %= mod; y >>= 1; x = x * x; x %= mod; } return ans; } int gcd(int x, int y){ if(x>y){int tmp = x; x = y; y = tmp;} while(x>0){ y %= x; int tmp = x; x = y; y = tmp; } return y; } int max(int x, int y) { return x > y ? x : y; } int min(int x, int y) { return x < y ? x : y; } double max(double x, double y) { return x > y ? x : y; } double min(double x, double y) { return x < y ? x : y; } long max(long x, long y) { return x > y ? x : y; } long min(long x, long y) { return x < y ? x : y; } int abs(int x) { return x > 0 ? x : -x; } double abs(double x) { return x > 0 ? x : -x; } long abs(long x) { return x > 0 ? x : -x; } boolean zero(double x) { return abs(x) < eps; } double sin(double x){return Math.sin(x);} double cos(double x){return Math.cos(x);} double tan(double x){return Math.tan(x);} double sqrt(double x){return Math.sqrt(x);} }