Description
Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.Input
There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0Sample Input
12 2 2 3
Sample Output
7
題目大意:給出一個n和一個集合,m個數,問在1到n內 能被m中的數正除的有多少?
可以理解為在1到n內,是m中的數的倍數的數有多少?
在容斥原理中,用二進制數表示第i個數取沒取,如果取了奇數個數,加上。 取了偶數個數,減去
#include#include #include using namespace std ; #define LL long long LL a[12] ; LL n , m , k , i , j , cnt , num , ans ; LL gcd(LL x,LL y) { return x == 0 ? y : gcd(y%x,x) ; } int main() { while(scanf("%lld %lld", &n, &m) != EOF) { ans = 0 ; for(i = 0 ; i < m ; i++) { scanf("%lld", &a[i]) ; if( a[i] == 0 ) { i-- ; m-- ; } } cnt = 1 << m ; for(i = 1 ; i < cnt ; i++) { k = 1 ; num = 0 ; for(j = 0 ; j < m ; j++) { if( 1<