Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
public class Solution { int []f; public int minimumTotal(List> triangle) { int size = triangle.size(); f = new int[(size+1)*(size)/2]; f[0] = triangle.get(0).get(0); for(int i=1;i
深搜(超時) public class Solution { int minRes = Integer.MAX_VALUE; public int minimumTotal(List> triangle) { minimumTotal(triangle,0,0,0); return minRes; } private void minimumTotal(List
> triangle,int sum,int size,int column){ if(size==triangle.size()){ minRes = Math.min(sum, minRes); return; } sum += triangle.get(size).get(column); minimumTotal(triangle,sum,size+1,column); minimumTotal(triangle,sum,size+1,column+1); } }