UVA10616 - Divisible Group Sums(dp)
題目鏈接
題目大意:N個數,選擇m個數出來,問相加的和能夠整除MOD有多少種選擇方式。
解題思路:從1到N數選擇過去,每個數有選和不選兩種可能,並且(num + d) % MOD = num % MOD + d % MOD, 所以可以這麼做,最後判斷一下余數等於0麼。坑點是這題N個數會有負數,負數的取模 (num % MOD + MOD) % MOD.這一題因為沒有控制選擇的數目m的增加次數,導致re了好久,簡直無語死了。。。
代碼:
#include
#include
typedef long long ll;
const int maxn = 205;
const int maxm = 15;
const int maxd = 25;
int N, Q, MOD, M;
int num[maxn], tmp[maxn];
ll f[maxn][maxm][maxd];
void init () {
for (int i = 0; i < N; i++)
scanf ("%d", &num[i]);
}
ll dp (int n, int m, int d) {
ll& ans = f[n][m][d];
if (ans != -1)
return ans;
if (n == N) {
if (m == M && d == 0)
return ans = 1;
return ans = 0;
}
ans = 0;
if (m < M)
ans += dp(n + 1, m + 1, (d + tmp[n]) % MOD);
ans += dp(n + 1, m, d);
return ans;
}
int main () {
int cas = 0;
while (scanf ("%d%d", &N, &Q) && (N || Q)) {
init();
printf ("SET %d:\n", ++cas);
for (int i = 0; i < Q; i++) {
scanf ("%d%d", &MOD, &M);
memset (f, -1, sizeof (f));
for (int j = 0; j < N; j++)
tmp[j] = (num[j] % MOD + MOD) % MOD;
printf ("QUERY %d: %lld\n", i + 1, dp(0, 0, 0));
}
}
return 0;
}