Description
A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n and k, you should count the number of ways to express n as a sum of k different primes. Here, two ways are considered to be the same if they sum up the same set of the primes. For example, 8 can be expressed as 3 + 5 and 5 + 3 but the are not distinguished.
When n and k are 24 and 3 respectively, the answer is two because there are two sets {2, 3, 19} and {2, 5, 17} whose sums are equal to 24. There are not other sets of three primes that sum up to 24. For n = 24 and k = 2, the answer is three, because there are three sets {5, 19}, {7, 17} and {11, 13}. For n = 2 and k = 1, the answer is one, because there is only one set {2} whose sum is 2. For n = 1 and k = 1, the answer is zero. As 1 is not a prime, you shouldn’t count {1}. For n = 4 and k = 2, the answer is zero, because there are no sets of two different primes whose sums are 4.
Your job is to write a program that reports the number of such ways for the given n and k.
Input
The input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated by a space. You may assume that n ≤ 1120 and k ≤ 14.
Output
The output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of the ways for n and k specified in the corresponding dataset. You may assume that it is less than 231.
Sample Input
24 3 24 2 2 1 1 1 4 2 18 3 17 1 17 3 17 4 100 5 1000 10 1120 14 0 0
Sample Output
2 3 1 0 0 2 1 0 1 55 200102899 2079324314
Source
類似於背包問題,不過有2個代價
設dp[i][j]表示 用j個素數表示出i這個數的方案數
dp[i][j] += dp[ i - prime][j - 1]
大家知道01背包優化到一維時體積需要逆序循環是因為 f[i][j] 需要由 f[i - 1][j - c]推得,而f[i - 1][j - c]又要存在dp[j - c]中,如果順序循環,dp[j - c]中將存放f[i][j - c],所以就不對了,對於此題,我們其實已經將狀態降到二維了(本來是三維),所以同樣的,在循環體積時,需要逆序
#include