題目鏈接
題意:根據圖那樣,給定一個網絡,要求阻斷s到t,需要炸邊的最小代價
思路:顯然的最小割,但是也顯然的直接建圖強行網絡流會超時,這題要利用平面圖求最小割的方法,把每一塊當成一個點,共有邊連邊,然後每一個路徑就是一個割,然後最短路就是最小割了
代碼:
#include#include #include #include using namespace std; const int MAXNODE = 1000005; const int MAXEDGE = 3 * MAXNODE; typedef int Type; const Type INF = 0x3f3f3f3f; struct Edge { int u, v; Type dist; Edge() {} Edge(int u, int v, Type dist) { this->u = u; this->v = v; this->dist = dist; } }; struct HeapNode { Type d; int u; HeapNode() {} HeapNode(Type d, int u) { this->d = d; this->u = u; } bool operator < (const HeapNode& c) const { return d > c.d; } }; struct Dijkstra { int n, m; Edge edges[MAXEDGE]; int first[MAXNODE]; int next[MAXEDGE]; bool done[MAXNODE]; Type d[MAXNODE]; void init(int n) { this->n = n; memset(first, -1, sizeof(first)); m = 0; } void add_Edge(int u, int v, Type dist) { edges[m] = Edge(u, v, dist); next[m] = first[u]; first[u] = m++; } Type dijkstra(int s, int t) { priority_queue Q; for (int i = 0; i < n; i++) d[i] = INF; d[s] = 0; memset(done, false, sizeof(done)); Q.push(HeapNode(0, s)); while (!Q.empty()) { HeapNode x = Q.top(); Q.pop(); int u = x.u; if (done[u]) continue; done[u] = true; for (int i = first[u]; i != -1; i = next[i]) { Edge& e = edges[i]; if (d[e.v] > d[u] + e.dist) { d[e.v] = d[u] + e.dist; Q.push(HeapNode(d[e.v], e.v)); } } } return d[t]; } } gao; typedef long long ll; int n, m; int main() { while (~scanf("%d%d", &n, &m)) { int u, v, w; gao.init(n * m * 4 + 2); int s = n * m * 4, t = n * m * 4 + 1; for (int i = 0; i < (n + 1); i++) { for (int j = 0; j < m; j++) { scanf("%d", &w); u = (i - 1) * m + j + n * m; v = i * m + j; if (i == 0) u = t; if (i == n) v = s; gao.add_Edge(u, v, w); gao.add_Edge(v, u, w); } } for (int i = 0; i < n; i++) { for (int j = 0; j < (m + 1); j++) { scanf("%d", &w); u = n * m * 3 + i * m + j - 1; v = n * m * 2 + i * m + j; if (j == 0) u = s; if (j == m) v = t; gao.add_Edge(u, v, w); gao.add_Edge(v, u, w); } } for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { scanf("%d", &w); u = i * m + j; v = n * m * 2 + i * m + j; gao.add_Edge(u, v, w); gao.add_Edge(v, u, w); scanf("%d", &w); v += n * m; gao.add_Edge(u, v, w); gao.add_Edge(v, u, w); } for (int j = 0; j < m; j++) { scanf("%d", &w); u = n * m + i * m + j; v = n * m * 2 + i * m + j; gao.add_Edge(u, v, w); gao.add_Edge(v, u, w); scanf("%d", &w); v += n * m; gao.add_Edge(u, v, w); gao.add_Edge(v, u, w); } } printf("%d\n", gao.dijkstra(s, t)); } return 0; }