程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> C++入門知識 >> UVA 818 Cutting Chains (DFS)

UVA 818 Cutting Chains (DFS)

編輯:C++入門知識

UVA 818 Cutting Chains (DFS)


What a find! Anna Locke has just bought several links of chain some of which may be connected. They are made from zorkium, a material that was frequently used to manufacture jewelry in the last century, but is not used for that purpose anymore. It has its very own shine, incomparable to gold or silver, and impossible to describe to anyone who has not seen it first hand.

Anna wants the pieces joined into a single end-to-end strand of chain. She takes the links to a jeweler who tells her that the cost of joining them depends on the number of chain links that must be opened and closed. In order to minimize the cost, she carefully calculates the minimum number of links that have to be opened to rejoin all the links into a single sequence. This turns out to be more difficult than she at first thought. You must solve this problem for her.

Input

The input consists of descriptions of sets of chain links, one set per line. Each set is a list of integers delimited by one or more spaces. Every description starts with an integer n, which is the number of chain links in the set, where 1 ≤n ≤15. We will label the links 1, 2,..., n. The integers following n describe which links are connected to each other. Every connection is specified by a pair of integers i,j where 1 ≤i,j ≤n and i ≠j, indicating that chain links i and j are connected, i.e., one passes through the other. The description for each set is terminated by the pair -1 -1, which should not be processed.

The input is terminated by a description starting with n = 0. This description should not be processed and will not contain data for connected links.

Output

For each set of chain links in the input, output a single line which reads

Set N: Minimum links to open is M

where N is the set number and M is the minimal number of links that have to be opened and closed such that all links can be joined into one single chain.


Sample Input Output for the Sample Input
5 1 2 2 3 4 5 -1 -1
7 1 2 2 3 3 1 4 5 5 6 6 7 7 4 -1 -1
4 1 2 1 3 1 4 -1 -1
3 1 2 2 3 3 1 -1 -1
3 1 2 2 1 -1 -1
0
Set 1: Minimum links to open is 1
Set 2: Minimum links to open is 2
Set 3: Minimum links to open is 1
Set 4: Minimum links to open is 1
Set 5: Minimum links to open is 1
題意:一個環,不完整,問最少open幾個才能組成一個完整的環.

#include
#include
#include
#include
#include
typedef long long LL;
using namespace std;
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a )
int mp[15][15];
int vis[15];
int n,cnt;
bool ok(int s)//ok判斷一個環接2個以上的環的不合法狀態,
{
    REP(i,n)
    {
        if(s&(1<2)   return true;
    }
    return false;
}
bool dfs(int s,int now,int pre)
{
    vis[now]=1;
    REP(i,n)
    {
        if(!mp[now][i]||(s&(1<>1)+(s&1);
}
int solve()
{
    int ans=0x3f3f3f;
    int status=1<=cnt-1)
            ans=min(ans,cal(stau));
    }
    return ans;
}
int main()
{
    int x,y;
    int cas=1;
    while(~scanf("%d",&n)&&n)
    {
        CLEAR(mp,0);
        while(~scanf("%d%d",&x,&y)&&(x!=-1&&y!=-1))
            mp[x-1][y-1]=mp[y-1][x-1]=1;
        printf("Set %d: Minimum links to open is %d\n",cas++,solve());
    }
    return 0;
}



  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved