poj2155 Matrix 二維數組數組
http://poj.org/problem?id=2155
Matrix
Time Limit: 3000MS
Memory Limit: 65536K
Total Submissions: 18769
Accepted: 7078
Description
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change
it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
Input
The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2
y2", which has been described above.
Output
For each querying output one line, which has an integer representing A[x, y].
There is a blank line between every two continuous test cases.
Sample Input
1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1
Sample Output
1
0
0
1
Source
POJ Monthly,Lou Tiancheng
題意:二維矩陣,可以把子矩陣反轉,查詢某點的狀態。
題解:二維樹狀數組可搞。
屬於樹狀數組的第二類應用,區間修改單點查值。
(2)“改段求點”型,即對於序列A有以下操作:
【1】修改操作:將A[l..r]之間的全部元素值加上c;
【2】求和操作:求此時A[x]的值。
這個模型中需要設置一個輔助數組B:B[i]表示A[1..i]到目前為止共被整體加了多少(或者可以說成,到目前為止的所有ADD(i, c)操作中c的總和)。
則可以發現,對於之前的所有ADD(x, c)操作,當且僅當x>=i時,該操作會對A[i]的值造成影響(將A[i]加上c),又由於初始A[i]=0,所以有A[i] = B[i..N]之和!而ADD(i, c)(將A[1..i]整體加上c),將B[i]加上c即可——只要對B數組進行操作就行了。
這樣就把該模型轉化成了“改點求段”型,只是有一點不同的是,SUM(x)不是求B[1..x]的和而是求B[x..N]的和,此時只需把ADD和SUM中的增減次序對調即可(模型1中是ADD加SUM減,這裡是ADD減SUM加)。代碼:
void ADD(int x, int c)
{
for (int i=x; i>0; i-=i&(-i)) b[i] += c;
}
int SUM(int x)
{
int s = 0;
for (int i=x; i<=n; i+=i&(-i)) s += b[i];
return s;
}
操作【1】:ADD(l-1, -c); ADD(r, c);
操作【2】:SUM(x)。
對於這道題,就是變為二維的而已,取反操作可以看成+1,最後就看是否整除2即可。
比如操作x1,y1,x2,y2的子矩形,就是
add(x2,y2,1);
add(x1-1,y2,-1);
add(x2,y1-1,-1);
add(x1-1,y1-1,1);
畫個圖想想就知道了。
代碼:
/**
* @author neko01
*/
//#pragma comment(linker, "/STACK:102400000,102400000")
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include