程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> C++入門知識 >> ZOJ 3822 Domination(概率dp)

ZOJ 3822 Domination(概率dp)

編輯:C++入門知識

ZOJ 3822 Domination(概率dp)


概率dp,一開始用了二維超時,後來加了一位記憶化就不超時了啊。dp[x][y][z]代表已經覆蓋了第x行y列此時還剩下k個空格。

所以:dp[x][y][z] = p1*dp[x+1][y][z-1]+p2*dp[x][y+1][z-1]+p3*dp[x+1][y+1][z-1]+p4*dp[x][y][z-1] + 1。

Domination

Time Limit: 8 Seconds Memory Limit: 131072 KB Special Judge

Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with N rows and Mcolumns.

Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominated by the chess pieces. That means there is at least one chess piece in every row. Also, there is at least one chess piece in every column.

"That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help him.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

There are only two integers N and M (1 <= N, M <= 50).

Output

For each test case, output the expectation number of days.

Any solution with a relative or absolute error of at most 10-8 will be accepted.

Sample Input

2
1 3
2 2

Sample Output

3.000000000000
2.666666666667
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define eps 1e-9
#define pi acos(-1.0)
#define inf 107374182
#define inf64 1152921504606846976
#define lc l,m,tr<<1
#define rc m + 1,r,tr<<1|1
#define iabs(x)  ((x) > 0 ? (x) : -(x))
#define clear1(A, X, SIZE) memset(A, X, sizeof(A[0]) * (SIZE))
#define clearall(A, X) memset(A, X, sizeof(A))
#define memcopy1(A , X, SIZE) memcpy(A , X ,sizeof(X[0])*(SIZE))
#define memcopyall(A, X) memcpy(A , X ,sizeof(X))
#define max( x, y )  ( ((x) > (y)) ? (x) : (y) )
#define min( x, y )  ( ((x) < (y)) ? (x) : (y) )

using namespace std;

const int maxn = 55;

double dp[maxn][maxn][maxn*maxn];
int n, m;
int N;
double dfs(int x, int y, int z)
{
    if(dp[x][y][z] != -1.0) return dp[x][y][z];
    if(x == n && y == m)
    {
        dp[x][y][z] = 0.0;
        return dp[x][y][z];
    }
    double p1 = 0.0, p2 = 0.0, p3 = 0.0, p4 = 0.0;
    dp[x][y][z] = 1.0;
    if(x+1 <= n)
    {
        p1 = ((n-x)*y*1.0)/z*1.0;
        dp[x][y][z] += p1*dfs(x+1, y, z-1);
    }
    if(y+1 <= m)
    {
        p2 = ((m-y)*x*1.0)/z*1.0;
        dp[x][y][z] += p2*dfs(x, y+1, z-1);
    }
    if(x+1 <= n && y+1 <= m)
    {
        p3 = ((n-x)*(m-y))*1.0/z*1.0;
        dp[x][y][z] += p3*dfs(x+1, y+1, z-1);
    }
    p4 = 1.0-p1-p2-p3;
    if(p4 >= 0) dp[x][y][z] += p4*dfs(x, y, z-1);
    return dp[x][y][z];
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d %d",&n, &m);
        N = n*m;
        if(n == 1 || m == 1)
        {
            printf("%.10lf\n",(double)max(n, m));
            continue;
        }
        for(int i = 0; i <= n; i++)
            for(int j = 0; j <= m; j++)
                for(int k = 0; k <= n*m; k++) dp[i][j][k] = -1.0;
        printf("%.10lf\n",dfs(1, 1, N-1)+1);
    }
    return 0;
}


  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved