Palindrome Partitioning I
第一種方法是DFS,將所有可能的前綴找到,遞歸調用partition(剩余字符串)
復雜度為O(2^n)
代碼如下:
vector> partition(string s) { vector > res; vector patition; if (s.size() == 0) return res; partition(s, patition, res); return res; } void partition(string s, vector & patition, vector >& res) { for (int i = 1; i < s.size(); i++) { if (isPalindrome(s.substr(0, i))) { patition.push_back(s.substr(0, i)); partition(s.substr(i), patition, res); patition.pop_back(); } } if (isPalindrome(s)) { patition.push_back(s); res.push_back(patition); patition.pop_back(); } } bool isPalindrome(string s) { int l = 0, r = s.size() - 1; while (l <= r) { if (s[l] != s[r]) return false; l++; r--; } return true; }
來自 https://oj.leetcode.com/discuss/9623/my-java-dp-only-solution-without-recursion-o-n-2
res(i)表示s[0...i-1]的所有分解方式
isPalin(i,j)表示s[i...j]是否為回文串
isPalin(i,j) = true if i==j or (s[i] == s[j] and isPalin(i + 1, j - 1)) or (s[i] == s[j] and i + 1 == j)
res(i) = res(j) + s[j...i-1] if isPalin(j, i-1)
vector> partition(string s) { int size = s.size(); vector >> res(size + 1); res[0].push_back(vector (0)); vector > isPalin(size + 1, vector (size + 1, false)); for (int i = 0; i < size; i++) { for (int j = 0; j <= i; j++) { if (i == j || s[i] == s[j] && (j + 1 == i || isPalin[j + 1][i - 1])) { isPalin[j][i] = true; for (int p = 0; p < res[j].size(); p++) { vector prefix = res[j][p]; prefix.push_back(s.substr(j, i - j + 1)); res[i + 1].push_back(prefix); } } } } return res[size]; }
Palindrome Partitioning II
按照Palindrome Partitioning I的DP的代碼,不難得到。
代碼如下:
int minCut(string s) { int size = s.size(); vectorcut(size + 1, INT_MAX); vector > isPalin(size + 1, vector (size + 1, false)); cut[0] = 0; for (int i = 0; i < size; i++) { for (int j = 0; j <= i; j++) { if (i == j || s[i] == s[j] && (j + 1 == i || isPalin[j + 1][i - 1])) { isPalin[j][i] = true; cut[i + 1] = min(cut[i + 1], cut[j] + 1); } } } return cut[size] - 1; }
第二種方法省去了isPalin數組
來自https://oj.leetcode.com/discuss/9476/solution-does-not-need-table-palindrome-right-uses-only-space
對於s中的位置i,分別尋找以i為中心的奇數長度回文子串s[i-j...i+j] 和偶數長度回文子串s[i-j+1...i+j]
從而有cut(i + j + 1) = min{cut(i - j) + 1, cut(i - j + 1) + 1}
代碼如下:
int minCut(string s) { int n = s.size(); vectorcut(n+1, 0); // number of cuts for the first k characters for (int i = 0; i <= n; i++) cut[i] = i-1; for (int i = 0; i < n; i++) { for (int j = 0; i-j >= 0 && i+j < n && s[i-j]==s[i+j] ; j++) // odd length palindrome cut[i+j+1] = min(cut[i+j+1],1+cut[i-j]); for (int j = 1; i-j+1 >= 0 && i+j < n && s[i-j+1] == s[i+j]; j++) // even length palindrome cut[i+j+1] = min(cut[i+j+1],1+cut[i-j+1]); } return cut[n]; }