Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
confused what "{1,#,2,3}"
means? >
read more on how binary tree is serialized on OJ.
The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.
Here's an example:
1 / \ 2 3 / 4 \ 5The above binary tree is serialized as
"{1,2,3,#,#,4,#,#,5}"
.
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; #if 1 //第一種方法 class Solution { public: bool isValidBST(TreeNode *root) { return CheckBST(root,INT_MIN,INT_MAX); } private: bool CheckBST(TreeNode *root,int min,int max) { if(root == NULL) return true; return min < root->val && root->val < max && CheckBST(root->left,min,root->val) && CheckBST(root->right,root->val,max); } }; #endif // 1 #if 0 //第二種方法 class Solution { public: bool isValidBST(TreeNode *root) { dfs(root); for(int i = 1; i < result.size(); i++) { if(result[i-1] >= result[i]) return false; } return true; } private: std::vectorresult; void dfs(TreeNode *root) { if(root != NULL) { dfs(root->left); result.push_back(root->val); dfs(root->right); } } }; #endif // 1