Description
Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys 10.0 French francs, and 1 French franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent.Input
The input will contain one or more test cases. Om the first line of each test case there is an integer n (1<=n<=30), representing the number of different currencies. The next n lines each contain the name of one currency. Within a name no spaces will appear. The next line contains one integer m, representing the length of the table to follow. The last m lines each contain the name ci of a source currency, a real number rij which represents the exchange rate from ci to cj and a name cj of the destination currency. Exchanges which do not appear in the table are impossible.Output
For each test case, print one line telling whether arbitrage is possible or not in the format "Case case: Yes" respectively "Case case: No".Sample Input
3 USDollar BritishPound FrenchFranc 3 USDollar 0.5 BritishPound BritishPound 10.0 FrenchFranc FrenchFranc 0.21 USDollar 3 USDollar BritishPound FrenchFranc 6 USDollar 0.5 BritishPound USDollar 4.9 FrenchFranc BritishPound 10.0 FrenchFranc BritishPound 1.99 USDollar FrenchFranc 0.09 BritishPound FrenchFranc 0.19 USDollar 0
Sample Output
Case 1: Yes Case 2: No
Source
題目大意:求一筆錢經過各種貨幣之間的兌換,最後兌換回原來的貨幣是否會增值,增值的話輸出Yes,否則輸出No.
先初始化map數組為0,(其中map[i][i] = 1(自身兌換自身匯率為1)),最後用弗洛伊德算法更新map數組,然後遍歷map[i][i]的權值是否大於1,如果大於1就說明增值了。
弗洛伊德算法:
#include#include #include #include #include #include using namespace std; const int N = 10001; string name[1000]; int n,m; double map[N][N]; int findd(string aa) { for(int i=0;i 1) { return 1; } } return 0; } int main() { int k = 0; while(cin >> n) { if(n == 0) { break; } for(int i=0;i > name[i]; } cin >> m; string name1,name2; double mm; getchar(); for(int i=0;i > name1 >> mm >> name2; int a,b; a = findd(name1); b = findd(name2); map[a][b] = mm; } int pp = floyd(); if(pp == 1) { cout << "Case " << ++k << ": Yes" << endl; } else { cout << "Case " << ++k << ": No" << endl; } } return 0; }
貝爾曼福特算法:
#include#include #include #include #include using namespace std; int n,m; string name[10000]; int t; double num[100010]; struct node { int x,y; double z; }q[1000010]; void add(int x,int y,double p) { q[t].x = x; q[t].y = y; q[t++].z = p; } int findd(string aa) { for(int i=0;i > n) { t = 0; if(n == 0) { break; } getchar(); for(int i=0;i > name[i]; } string name1,name2; double mm; cin >> m; getchar(); for(int i=0;i > name1 >> mm >> name2; int a = findd(name1); int b = findd(name2); add(a,b,mm); } int pp = BF(); if(pp == 1) { cout << "Case " << ++k << ": Yes" << endl; } else { cout << "Case " << ++k << ": No" << endl; } } return 0; }