Description
You are given 12 rods of equal length. Each of them is colored in certain color. Your task is to determine in how many different ways one can construct a cube using these rods as edges. Two cubes are considered equal if one of them could be rotated and put next to the other, so that the corresponding edges of the two cubes are equally colored.
The first line of input contains T (1≤T≤60), the number of test cases. Then T test cases follow. Each test case consists of one line containing 12 integers. Each of them denotes the color of the corresponding rod. The colors are numbers between 1 and 6.
The output for one test consists of one integer on a line - the number of ways one can construct a cube with the described properties.
Sample Input
Sample Output
3
1 2 2 2 2 2 2 2 2 2 2 2
1 1 2 2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 5 6 6
1
5
312120
Problem source: Bulgarian National Olympiad in Informatics 2003
Problem submitter: Ivaylo Riskov
Problem solution: Ivaylo Riskov, K M Hasan
題意:有12條邊,每個邊有指定的顏色,組成一個立方體,求種數
思路:參看cxlove GG的博客
#include#include #include #include #include typedef long long ll; using namespace std; const int maxn = 20; int a[maxn], b[maxn]; ll c[maxn][maxn]; void init() { for (int i = 0; i <= 12; i++) { c[i][0] = c[i][i] = 1; for (int j = 1; j < i; j++) c[i][j] += c[i-1][j] + c[i-1][j-1]; } } ll solve(int k) { ll sum = 1; int n = 0; for (int i = 0; i < 6; i++) if (b[i] % k == 0) { b[i] /= k; n += b[i]; } else return 0; for (int i = 0; i < 6; i++) { sum *= c[n][b[i]]; n -= b[i]; } return sum; } ll still() { memcpy(b, a, sizeof(a)); return solve(1); } ll point() { memcpy(b, a, sizeof(a)); return 4*2*solve(3); } ll plane() { memcpy(b, a, sizeof(a)); ll ans = 3*2*solve(4); memcpy(b, a, sizeof(a)); return ans + 3*solve(2); } ll edge() { ll ans = 0; for (int i = 0; i < 6; i++) for (int j = 0; j < 6; j++) { memcpy(b, a, sizeof(b)); b[i]--, b[j]--; if (b[i] < 0 || b[j] < 0) continue; ans += 6 * solve(2); } return ans; } ll polya() { ll ans = 0; ans += still(); ans += point(); ans += plane(); ans += edge(); return ans / 24; } int main() { init(); int t, k; scanf("%d", &t); while (t--) { memset(a, 0, sizeof(a)); for (int i = 0; i < 12; i++) { scanf("%d", &k); a[k-1]++; } printf("%lld\n", polya()); } return 0; }