程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> C++入門知識 >> poj 1845 Sumdiv ,質因子分解

poj 1845 Sumdiv ,質因子分解

編輯:C++入門知識

poj 1845 Sumdiv ,質因子分解


題意:

求A^B的所有約數之和。

 

題解:

A = P1^a1 * P2^a2 * ... * Pn^an.
A^B的所有約數之和為:
sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].

用遞歸二分求等比數列1+pi+pi^2+pi^3+...+pi^n:
(1)若n為奇數,一共有偶數項,則:
1 + p + p^2 + p^3 +...+ p^n
= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
= (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))
上式紅色加粗的前半部分恰好就是原式的一半,那麼只需要不斷遞歸二分求和就可以了,後半部分為冪次式,將在下面第4點講述計算方法。


(2)若n為偶數,一共有奇數項,則:
1 + p + p^2 + p^3 +...+ p^n
= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
= (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);
上式紅色加粗的前半部分恰好就是原式的一半,依然遞歸求解
 

 

 

#include
#include
#include
#include
#include

using namespace std;

typedef long long LL;

const int maxn = 20000;
const int mod = 9901;
int p[maxn], k[maxn], cnt = 0;

LL pow(LL a, LL b) {
    LL res = 1;
    while(b) {
        if(b&1) res = res*a % mod;
        a = a*a % mod;
        b >>= 1;
    }
    return res;
}

void factor(int n) {
    cnt = 0;
    int m = (int)sqrt(n + 0.5);
    for(int i=2; i<=m; i+=2) {
        if(!(n%i)) {
            p[cnt] = i;
            k[cnt] = 0;
            while(!(n%i)) {
                n /= i;
                k[cnt]++;
            }
            cnt++;
        }
        if(i==2) i--;
    }
    if(n>1) {
        p[cnt] = n;
        k[cnt] = 1;
        cnt++;
    }
}

LL sum(LL p, LL n) {
    if(n==0)
        return 1;
    if(n%2)
        return (sum(p,n/2)*(1+pow(p,n/2+1))) % mod;
    else
        return (sum(p,n/2-1)*(1+pow(p,n/2+1))+pow(p,n/2)) % mod;
}
int main() {
    int a, b;
    scanf("%d%d", &a, &b);
    factor(a);

    LL ans = 1;
    for(int i=0; i

 

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved