題目鏈接:uva 11651 - Krypton Number System
題目大意:給定進制base,和分數score,求在base進制下,有多少個數的值為score,要求不能有連續相同的數字以及前導0.計算一個數的值即為相鄰兩位數的平方差和。
解題思路:因為score很大,所以直接dp肯定超時,但是即使對於base=6的情況,每次新添一個數score最大增加25(0-5),所以用dp[i][j]預處理出base平方以內的總數,然後用矩陣快速冪計算。
#include
#include
#include
using namespace std;
typedef unsigned long long ll;
const int maxn = 155;
const ll MOD = 1ll<<32;
struct Mat {
int r, c;
ll arr[maxn][maxn];
Mat (int r = 0, int c = 0) { set(r, c); }
void set(int r, int c) {
this->r = r;
this->c = c;
memset(arr, 0, sizeof(arr));
}
Mat operator * (const Mat& u) {
Mat ret(r, u.c);
for (int k = 0; k < c; k++) {
for (int i = 0; i < r; i++) {
if (arr[i][k] == 0)
continue;
for (int j = 0; j < u.c; j++)
ret.arr[i][j] = (ret.arr[i][j] + arr[i][k] * u.arr[k][j]) % MOD;
}
}
return ret;
}
};
int base, N;
ll dp[maxn][maxn], score;
void init () {
scanf("%d%llu", &base, &score);
N = (base-1) * (base-1);
memset(dp, 0, sizeof(dp));
for (int i = 0; i <= N; i++)
dp[0][i] = 1;
for (int i = 0; i < N; i++) {
for (int j = 0; j < base; j++) {
for (int k = 0; k < base; k++) {
int f = (j - k) * (j - k);
if (i + f > N || f == 0)
continue;
dp[i+f][j] = (dp[i+f][j] + dp[i][k]) % MOD;
}
}
}
}
Mat change () {
Mat ret(N*base, 1);
for (int i = 1; i <= N; i++)
for (int j = 0; j < base; j++)
ret.arr[(i-1)*base+j][0] = dp[i][j];
return ret;
}
Mat build () {
int n = N * base;
Mat x(n, n);
for (int i = base; i < n; i++)
x.arr[i-base][i] = 1;
for (int i = 0; i < base; i++) {
for (int j = 0; j < base; j++) {
if (i == j)
continue;
int k = N - (i-j) * (i-j);
x.arr[(N-1)*base+i][k*base+j] = 1;
}
}
return x;
}
Mat pow_mat (Mat ret, int n) {
Mat x = build();
while (n) {
if (n&1)
ret = x * ret;
x = x * x;
n >>= 1;
}
return ret;
}
ll solve () {
ll ans = 0;
if (score <= N) {
for (int i = 1; i < base; i++)
ans = (ans + dp[score][i]) % MOD;
return ans;
}
Mat ret = change();
ret = pow_mat(ret, score-N);
for (int i = 1; i < base; i++)
ans = (ans + ret.arr[(N-1)*base+i][0]) % MOD;
return ans;
}
int main () {
int cas;
scanf("%d", &cas);
for (int kcas = 1; kcas <= cas; kcas++) {
init();
printf("Case %d: %llu\n", kcas, solve());
}
return 0;
}