bnu 34988 Happy Reversal
Happy Reversal
Elfness is studying in an operation "
NOT".
For a binary number A, if we do operation "
NOT A", after that, all digits of A will be reversed. (e.g. A=
1001101, after operation "
NOT A", A will be
0110010).
Now Elfness has N binary numbers of length K, now he can do operations "
NOT" for some of his numbers.
Let's assume after his operations, the maximum number is M, the minimum number is P. He wants to know what's the maximum M - P he can get. Can you help him?
Input
The first line of input is an integer T (T ≤ 60), indicating the number of cases.
For each case, the first line contains 2 integers N (1 ≤ N ≤ 10000) and K (1 ≤ K ≤ 60), the next N lines contains N binary numbers, one number per line, indicating the numbers that Elfness has. The length of each binary number is K.
Output
For each case, first output the case number as "Case #x: ", and x is the case number. Then you should output an integer, indicating the maximum result that Elfness can get.
Sample Input
2
5 6
100100
001100
010001
010001
111111
5 7
0001101
0001011
0010011
0111000
1001011
Sample Output
Case #1: 51
Case #2: 103
Source
2014 ACM-ICPC Beijing Invitational
Programming Contest
題解及代碼:
#include
#include
#include
#include
#include
using namespace std;
long long b_2[63];
void init()
{
b_2[0]=1;
for(int i=1;i<=60;i++)
{
b_2[i]=2*b_2[i-1];
}
}
long long cal(char s[],int v)
{
long long ans=0;
int len=strlen(s);
int i=0;
for(int i=0;ib.val;
}
int main()
{
init();
int cas,n,k;
char s[64];
memset(s,0,sizeof(s));
scanf("%d",&cas);
for(int ca=1;ca<=cas;ca++)
{
scanf("%d%d",&n,&k);
for(int i=0;i