題目鏈接:uva 11427 - Expect the Expected
題目大意:你每天晚上都會玩紙牌,每天固定最多玩n盤,每盤勝利的概率為p,你是一個固執的人,每天一定要保證勝局的比例大於p才會結束游戲,若n局後仍沒有,就會不開心,然後以後再也不完牌,問說你最多會玩多少個晚上。
解題思路:當j/i ≤ p時有dp(i-1,j) (1-p) + dp(i-1, j-1)
p,其他dp(i,j) = 0.Q=∑d(n,i)
列出數學期望公式:
EX=Q+2Q(1?Q)+3Q(1?Q)2+…
s=EXQ=1+2(1?Q)+3(1?Q)2+…
(1?Q)?s=(1?Q)+2(1?Q)2+3(1?Q)3+…
EX=Qs=1+(1?Q)+(1?Q)2+(1?Q)3…
為等比數列,根據等比數列求和公式,n趨近無窮大是為1/Q
#include
#include
#include
using namespace std;
const int maxn = 105;
double dp[maxn][maxn];
int main () {
int cas;
scanf("%d", &cas);
for (int kcas = 1; kcas <= cas; kcas++) {
int a, b, n;
scanf("%d/%d%d", &a, &b, &n);
double p = (double)a / b;
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
dp[0][1] = 0;
for (int i = 1; i <= n; i++) {
for (int j = 0; j * b <= a * i; j++) {
dp[i][j] = dp[i-1][j] * (1-p);
if (j)
dp[i][j] += dp[i-1][j-1] * p;
}
}
double q = 0;
for (int i = 0; i * b <= a * n; i++)
q += dp[n][i];
printf("Case #%d: %d\n", kcas, (int)(1/q));
}
return 0;
}