題目鏈接:
啊哈哈,點我點我
題目:
Radar Installation Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 52037 Accepted: 11682Description
Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.Input
The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.Output
For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.Sample Input
3 2 1 2 -3 1 2 1 1 2 0 2 0 0
Sample Output
Case 1: 2 Case 2: 1
Source
Beijing 2002這道題目是貪心裡面的區間選點問題。。貪心策略是:選區間的最右端的點.
思路:首先抽象出這個模型,以海島為圓心,雷達距離為半徑,求出在陸地上的區間,則雷達選在
這個區間之類那麼必定能夠掃描到這個海島。。求出所有區間後,就轉化成區間選點問題。。
還有就是代碼中的那個標准end要用double,我wa了好久。。。
代碼為:
#include#include #include #include #define INF 0x3f3f3f3f using namespace std; const int maxn=1000+10; struct Line { double le,ri; }line[maxn]; bool cmp(Line a,Line b) { if(a.ri!=b.ri) return a.ri b.le; } int main() { bool ok; int u,v,cas=1; int cnt; double End; int n,d; while(~scanf("%d%d",&n,&d)) { if(n==0&&d==0) return 0; cnt=0; ok=false; for(int i=1;i<=n;i++) { scanf("%d%d",&u,&v); if(v>d) ok=true; else { line[i].le=(double)u-sqrt((double)(d*d-v*v)); line[i].ri=(double)u+sqrt((double)(d*d-v*v)); } } if(ok) printf("Case %d: -1\n",cas++); else { sort(line+1,line+1+n,cmp); cnt=0; End=-INF; for(int i=1;i<=n;i++) { if(line[i].le>End) { cnt++; End=line[i].ri; } } printf("Case %d: %d\n",cas++,cnt); } } return 0; }