二分+SPFA找負環
I I U P C 2 0 0 6
Problem G: Going in Cycle!!
Input: standard input
Output: standard output
You are given a weighted directed graph with n vertices and m edges. Each cycle in the graph has a weight, which equals to sum of its edges. There are so many cycles in the graph with different weights. In this problem we want to find a cycle with the minimum mean.
Input
The first line of input gives the number of cases, N. N test cases follow. Each one starts with two numbers n and m. m lines follow, each has three positive number a, b, c which means there is an edge from vertex a to b with weight of c.
For each test case output one line containing “Case #x: ” followed by a number that is the lowest mean cycle in graph with 2 digits after decimal place, if there is a cycle. Otherwise print “No cycle found.”.
Constraints
- n ≤ 50
- a, b ≤ n
- c ≤ 10000000
Sample Input
Output for Sample Input
2
2 1
1 2 1
2 2
1 2 2
2 1 3
Case #1: No cycle found.
Case #2: 2.50
Problemsetter: Mohammad Tavakoli Ghinani
#include#include #include #include #include using namespace std; const double INF=1000000000.; struct Edge { int to,next; double w; }edge[110000]; int Adj[100],Size=0,n,m; void init() { Size=0; memset(Adj,-1,sizeof(Adj)); } void Add_Edge(int u,int v,double w) { edge[Size].to=v; edge[Size].next=Adj[u]; edge[Size].w=w; Adj[u]=Size++; } double dist[110]; int cq[110]; bool inq[110]; bool spfa(double mid) { queue q; for(int i=1;i<=n;i++) { q.push(i); dist[i]=INF; cq[i]=0; inq[i]=false; } while(!q.empty()) { int u=q.front(); q.pop(); inq[u]=false; for(int i=Adj[u];~i;i=edge[i].next) { int v=edge[i].to; if(dist[v]>dist[u]+edge[i].w-mid) { dist[v]=dist[u]+edge[i].w-mid; if(!inq[v]) { inq[v]=true; cq[v]++; if(cq[v]>=n) return false; q.push(v); } } } } return true; } int main() { int T_T,cas=1; scanf("%d",&T_T); while(T_T--) { scanf("%d%d",&n,&m); init(); double ans=INF; double low=0,high=0,mid; for(int i=0;i 1e-3) { mid=(high+low)/2.; if(spfa(mid)==false) { ans=min(ans,mid); high=mid; } else low=mid; } printf("%.2lf\n",ans); } return 0; }