程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> C++入門知識 >> poj 3169 Layout(差分約束)

poj 3169 Layout(差分約束)

編輯:C++入門知識

Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6549 Accepted: 3168

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

解題思路:
1、構造差分約束系統:
A,B距離不超過D則B-A<=D,
A,B距離至少為D則A-B<=-D.
2、若有解則求1和N之間的最短路徑:
例如:A-B<=D1 , B-C<=D2, A-C<=D3 不等式相加得:A-C<=min(D3,D1+D2)。而當A-B<=D時,我們建的邊是B->A的,所以我們只要求出1到N的最短距離即可,如果沒有最短距離,則輸出-2.

#include 
#include 
#include 
using namespace std;

const int maxne = 1000000;
const int maxnn = 1010;
const int INF = 0x3f3f3f3f;
struct edge{
    int u , v , d;
    edge(int a = 0 , int b = 0 , int c = 0){
        u = a , v = b , d = c;
    }
}e[maxne];
int head[maxnn] , next[maxne] , cnt , dis[maxnn] , vis[maxnn] , vt[maxnn];
int N , ML , MD;

void add(int u , int v , int d){
    e[cnt] = edge(u , v , d);
    next[cnt] = head[u];
    head[u] = cnt++;
}

void initial(){
    for(int i = 0; i < maxnn; i++) head[i] = -1 , dis[i] = INF , vis[i] = 0 , vt[i] = 0;
    for(int i = 0; i < maxne; i++) next[i] = -1;
    cnt = 0;
    for(int i = 1; i < N; i++){
        add(0 , i , 0);
        add(i+1 , i , 0);
    }
    add(0 , N , 0);
    dis[0] = 0;
}

void readcase(){
    int u , v , d;
    while(ML--){
        scanf("%d%d%d" , &u , &v , &d);
        add(u , v , d);
    }
    while(MD--){
        scanf("%d%d%d" , &u , &v , &d);
        add(v , u , -1*d);
    }
}

bool SPFA(int start){
    queue q;
    q.push(start);
    vt[start]++;
    while(!q.empty()){
        int u = q.front();
        q.pop();
        vis[u] = 0;
        int n = head[u];
        if(vt[u] > N+1){
            return false;
        }
        while(n != -1){
            int v = e[n].v;
            if(dis[v] > dis[u]+e[n].d){
                dis[v] = dis[u]+e[n].d;
                if(vis[v] == 0){
                    vt[v]++;
                    q.push(v);
                    vis[v] = 1;
                }
            }
            n = next[n];
        }
    }
    return true;
}

void computing(){
    if(!SPFA(0)){
        printf("-1\n");
    }else{
        for(int i = 0; i < maxnn; i++) dis[i] = INF;
        dis[1] = 0;
        SPFA(1);
        if(dis[N] == INF){
            printf("-2\n");
        }else{
            printf("%d\n" , dis[N]);
        }
    }
}

int main(){
    while(scanf("%d%d%d" , &N , &ML , &MD) != EOF){
        initial();
        readcase();
        computing();
    }
    return 0;
}


  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved