把電話號碼轉換成為詞典中可以記憶的的單詞的組合,找到最短的組合。
我這道題應用到的知識點:
1 Trie數據結構
2 map的應用
3 動態規劃法Word Break的知識
4 遞歸剪枝法
思路:
1 建立Trie字典樹,方便查找, 但是字典樹不是使用字符來建立的,而是把字符轉換成數字,建立一個數字字典樹, 然後葉子節點設置一個容器vector
2 動態規劃建立一個表,記錄可以在字典樹中找到的字符串的前綴子串
3 如果找到整個串都在字典樹中,那麼就可以直接返回這個單詞。如果無法直接找到,那麼就要在表中找到一個前綴子串,然後後面部分在字典樹中查找,看是否找到包含這個子串的單詞,並且要求找到的單詞長度最短。- 這裡可以使用剪枝法提高效率。
原題:http://acm.timus.ru/problem.aspx?space=1&num=1002
作者:靖心 - http://blog.csdn.net/kenden23
#include#include #include #include #include #include using namespace std; class PhoneNumber1002_2 { static const int SIZE = 10; struct Node { vector words; Node *children[SIZE]; explicit Node () : words() { for (int i = 0; i < SIZE; i++) { children[i] = NULL; } } }; struct Trie { Node *emRoot; int count; explicit Trie(int c = 0) : count(c) { emRoot = new Node; } ~Trie() { deleteTrie(emRoot); } void deleteTrie(Node *root) { if (root) { for (int i = 0; i < SIZE; i++) { deleteTrie(root->children[i]); } delete root; root = NULL; } } }; void insert(Trie *trie, string &keys, string &keyWords) { int len = (int)keys.size(); Node *pCrawl = trie->emRoot; trie->count++; for (int i = 0; i < len; i++) { int k = keys[i] - '0'; if (!pCrawl->children[k]) { pCrawl->children[k] = new Node; } pCrawl = pCrawl->children[k]; } pCrawl->words.push_back(keyWords); } Node *search(Node *root, string &keys) { int len = (int)keys.size(); Node *pCrawl = root; for (int i = 0; i < len; i++) { int k = keys[i] - '0'; if (!pCrawl->children[k]) { return NULL;//沒走完所有keys } pCrawl = pCrawl->children[k]; } return pCrawl; } void searchLeft(Node *leaf, Node *r, int len, int &prun) { if (len >= prun) return; if (leaf->words.size()) { r = leaf; prun = len; return; } for (int i = 0; i < SIZE; i++) { searchLeft(leaf->children[i], r, len+1, prun); } } void wordsToKey(string &keys, string &keyWords, unordered_map &umCC) { for (int i = 0; i < (int)keyWords.size(); i++) { keys.push_back(umCC[keyWords[i]]); } } void charsToMap(const string phdig[], unordered_map &umCC) { for (int i = 0; i < 10; i++) { for (int k = 0; k < (int)phdig[i].size(); k++) { umCC[phdig[i][k]] = i + '0'; } } } string searchComb(Trie *trie, string &num) { vector tbl(num.size()); for (int i = 0; i < (int)num.size(); i++) { string s = num.substr(0, i+1); Node *n = search(trie->emRoot, s); if (n && n->words.size()) { tbl[i].append(n->words[0]); continue;//這裡錯誤寫成break!! } for (int j = 1; j <= i; j++) { if (tbl[j-1].size()) { s = num.substr(j, i-j+1); n = search(trie->emRoot, s); if (n && n->words.size()) { tbl[i].append(tbl[j-1]); tbl[i].append(" "); tbl[i].append(n->words[0]); break; } } } } if (tbl.back().size()) { return tbl.back(); } string ans; for (int i = 0; i < (int)tbl.size() - 1; i++) { if (tbl[i].size()) { string tmp = tbl[i]; string keys = num.substr(i+1); Node *n = search(trie->emRoot, keys); if (!n) continue; Node *r = NULL; int prun = INT_MAX; searchLeft(n, r, 0, prun); tmp += r->words[0]; if (ans.empty() || tmp.size() < ans.size()) { ans = tmp; } } } return ans.empty()? "No solution." : ans; } //測試函數,不使用解題 void printTrie(Node *n) { if (n) { for (int i = 0; i < SIZE; i++) { printTrie(n->children[i]); for (int j = 0; j < (int)n->words.size(); j++) { cout< words[j]< umCC; charsToMap(phdig, umCC); int N; string num, keys, keyWords; while ((cin>>num) && "-1" != num) { cin>>N; Trie trie; while (N--) { cin>>keyWords; wordsToKey(keys, keyWords, umCC); insert(&trie, keys, keyWords); keys.clear();//別忘記清空 } cout<