程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> C++入門知識 >> SGU 185 Two shortest 最短路刪邊優化內存+網絡流

SGU 185 Two shortest 最短路刪邊優化內存+網絡流

編輯:C++入門知識

題目鏈接:點擊打開鏈接

題意:

給定n個點m條無向邊和邊權(無重邊)

找2條從1-n點路徑不相交的最短路(2條路必須都是最短)

最先是用費用流跑,結果各種mel

然後最短路優化,,,,把圖裡所有不在最短路上的邊刪掉

然後其實跑網絡流就可以了,,,開始還是mle,後來把鄰接表的from去掉才過,,


#include
#include
#include
#include
#include
#include
#include
using namespace std;

#define ll int 

#define N 402
#define M 121000
#define inf 10737418
#define inf64 1152921504606846976
struct Edge{  
	ll to, cap, nex;  
}edge[M*2];//注意這個一定要夠大 不然會re 還有反向弧  

ll head[N], edgenum;  
void add(ll u, ll v, ll cap, ll rw = 0){ //如果是有向邊則:add(u,v,cap); 如果是無向邊則:add(u,v,cap,cap); 
	Edge E = { v, cap, head[u]};  
	edge[ edgenum ] = E;  
	head[u] = edgenum ++;  

	Edge E2= { u, rw,  head[v]};  
	edge[ edgenum ] = E2;  
	head[v] = edgenum ++;  
}  
ll sign[N];  
bool BFS(ll from, ll to){  
	memset(sign, -1, sizeof(sign));  
	sign[from] = 0;  

	queueq;  
	q.push(from);  
	while( !q.empty() ){  
		int u = q.front(); q.pop();  
		for(ll i = head[u]; i!=-1; i = edge[i].nex)  
		{  
			ll v = edge[i].to;  
			if(sign[v]==-1 && edge[i].cap)  
			{  
				sign[v] = sign[u] + 1, q.push(v);  
				if(sign[to] != -1)return true;  
			}  
		}  
	}  
	return false;  
}  
ll Stack[N], top, cur[N];  
ll Dinic(ll from, ll to){
	ll ans = 0;  
	while( BFS(from, to) )  
	{  
		memcpy(cur, head, sizeof(head));  
		ll u = from;      top = 0;  
		while(1)  
		{  
			if(u == to)  
			{  
				ll flow = inf, loc;//loc 表示 Stack 中 cap 最小的邊  
				for(ll i = 0; i < top; i++)  
					if(flow > edge[ Stack[i] ].cap)  
					{  
						flow = edge[Stack[i]].cap;  
						loc = i;  
					}  

					for(ll i = 0; i < top; i++)  
					{  
						edge[ Stack[i] ].cap -= flow;  
						edge[Stack[i]^1].cap += flow;  
					}  
					ans += flow;  
					top = loc;  
					u = edge[Stack[top]^1].to;  
			}  
			for(ll i = cur[u]; i!=-1; cur[u] = i = edge[i].nex)//cur[u] 表示u所在能增廣的邊的下標  
				if(edge[i].cap && (sign[u] + 1 == sign[ edge[i].to ]))break;  
			if(cur[u] != -1)  
			{  
				Stack[top++] = cur[u];  
				u = edge[ cur[u] ].to;  
			}  
			else  
			{  
				if( top == 0 )break;  
				sign[u] = -1;  
				u = edge[ Stack[--top]^1 ].to;  
			}  
		}  
	}  
	return ans;  
}
void init(){memset(head,-1,sizeof head);edgenum = 0;}

ll dis[N];
ll n, m;
ll mp[401][401];
bool inq[N];
void spfa(int from, int to){
	for(int i = 1; i <= n; i++)dis[i] = inf;
	memset(inq, 0, sizeof inq);
	dis[from] = 0;
	queueq; q.push(from);
	inq[to] = 1;
	while(!q.empty()){
		int u = q.front(); q.pop(); inq[u] = 0;
		for(int i = 1; i <= n; i++)
			if(dis[i]>dis[u]+mp[u][i])
			{
				dis[i] = dis[u]+mp[u][i];
				if(!inq[i])inq[i] = 1, q.push(i);
			}

	}
}
void dfs(ll u, ll fa){
	if(u == n){printf("%d\n",u);return ;}
	else printf("%d ",u);
	for(ll i = head[u]; ~i; i = edge[i].nex){
		if(edge[i^1].cap != 1 || (i&1))continue;
		ll v = edge[i].to;
		if(v == fa)continue;
		edge[i^1].cap = 0;
		dfs(v, u);
		return;
	}
}
int main(){
	ll u, v, cost;
	while(~scanf("%d %d",&n,&m)){
		init();
		for(int i = 1; i <= n; i++)for(int j = 1; j <= n; j++)mp[i][j] = inf;
		while(m--)
		{
			scanf("%d %d %d",&u,&v,&cost);
			mp[u][v] = mp[v][u] = min(mp[u][v], cost);
		}
		spfa(1,n);
		if(dis[n] == inf){puts("No solution");continue;}
		for(ll i = 1; i <= n; i++)
			for(ll j = 1; j <= n; j++)if(mp[i][j]!=inf && dis[j] == mp[i][j] + dis[i])
				add(i,j,1);
		add(n,n+1,2);
		ll DIS = Dinic(1,n+1);
		if(DIS != 2){puts("No solution");continue;}
		else
		{
			dfs(1,1);
			dfs(1,1);
		}
	}
	return 0;
}
/*
4 6 
1 2 1 
1 3 1 
2 3 1 
3 4 2 
2 4 1 
1 4 1 

3 5 
1 3 1 
1 3 3  
1 3 3 
1 2 1 
2 3 1 

*/


  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved