點擊打開鏈接 The Bonus Salary! Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 2299 Accepted: 601
Description
In order to encourage employees' productivity, ACM Company has made a new policy. At the beginning of a period, they give a list of tasks to each employee. In this list, each task is assigned a "productivity score". After the first K days, the employee who gets the highest score will be awarded bonus salary.
Due to the difficulty of tasks, for task i-th:
It must be done from hh_Li : mm_Li : ss_Li to hh_Ri : mm_Ri : ss_Ri.This range of time is estimated very strictly so that anyone must use all of this time to finish the task.Moreover, at a moment, each employee can only do at most one task. And as soon as he finishes a task, he can start doing another one immediately.
XYY is very hard-working. Unfortunately, he's never got the award. Thus, he asks you for some optimal strategy. That means, with a given list of tasks, which tasks he should do in the first K days to maximize the total productivity score. Notice that one task can be done at most once.
Input
The first line contains 2 integers N and K (1 ≤ N ≤ 2000, 0 ≤ K ≤ 100), indicating the number of tasks and days respectively. This is followed by N lines; each line has the following format:
hh_Li:mm_Li:ss_Li hh_Ri:mm_Ri:ss_Ri w
Which means, the i-th task must be done from hh_Li : mm_Li : ss_Li to hh_Ri : mm_Ri : ss_Ri and its productivity score is w. (0 ≤hh_Li, hh_Ri ≤ 23, 0 ≤mm_Li, mm_Ri, ss_Li, ss_Ri ≤ 59, 1 ≤ w ≤ 10000). We use exactly 2 digits (possibly with a leading zero) to represent hh, mm and ss. It is guaranteed that the moment hh_Ri : mm_Ri : ss_Ri is strictly later than hh_Li : mm_Li : ss_Li.
Output
The output only contains a nonnegative integer --- the maximum total productivity score.
Sample Input
5 2 09:00:00 09:30:00 2 09:40:00 10:00:00 3 09:29:00 09:59:00 10 09:30:00 23:59:59 4 07:00:00 09:31:00 3
Sample Output
16
Hint
The optimal strategy is:
Day1: Task1, Task 4
Day2: Task 3
The total productivity score is 2 + 4 + 10 = 16.
Source
有n個任務,每個任務都有一個區間,每完成一個任務就會得到一定的分數,每次只能做一個任務,而且要求做滿此任務的整個時間段,給你k天的時間,問最多能夠得到多少分。 首先時間太雜,因此需要離散化一下,將所有的時間點按照從小到大排序,然後每個時間點和它後面的時間點相連,容量為inf,費用為0.之所以這樣連,是因為如果你要做這個時間點上的任務,那你就走時間段那條邊,但如果你不做這個時間點上的任務,為了確保你還可以沿著時間繼續走下去,所以建了一條容量為無窮費用為零的邊。 將每個任務的開始和結束相連,容量為1,費用為負的分數,因為任務只能 做一次,且要求最大分數,所以分數為負。 源點與第一個時間點相連,容量為k,費用為0.表示一共有k天。//2404K 1266MS #include#include #include #include #include using namespace std; const int MAXN=100000; const int inf=10000000; int pre[MAXN]; // pre[v] = k:在增廣路上,到達點v的邊的編號為k int dis[MAXN]; // dis[u] = d:從起點s到點u的路徑長為d int vis[MAXN]; // inq[u]:點u是否在隊列中 int path[MAXN]; int head[MAXN]; int NE,tot,ans,max_flow; int z[90000]; int vist[MAXN]; struct T { int s,e,w; } time[2207]; struct node { int u,v,cap,cost,next; } Edge[MAXN]; void addEdge(int u,int v,int cap,int cost) { Edge[NE].u=u; Edge[NE].v=v; Edge[NE].cap=cap; Edge[NE].cost=cost; Edge[NE].next=head[u]; head[u]=NE++; Edge[NE].v=u; Edge[NE].u=v; Edge[NE].cap=0; Edge[NE].cost=-cost; Edge[NE].next=head[v]; head[v]=NE++; } int SPFA(int s,int t) // 源點為0,匯點為sink。 { int i; for(i=s; i<=t; i++) dis[i]=inf; memset(vis,0,sizeof(vis)); memset(pre,-1,sizeof(pre)); dis[s] = 0; queue q; q.push(s); vis[s] =1; while(!q.empty()) // 這裡最好用隊列,有廣搜的意思,堆棧像深搜。 { int u =q.front(); q.pop(); for(i=head[u]; i!=-1; i=Edge[i].next) { int v=Edge[i].v; if(Edge[i].cap >0&& dis[v]>dis[u]+Edge[i].cost) { dis[v] = dis[u] + Edge[i].cost; pre[v] = u; path[v]=i; if(!vis[v]) { vis[v] =1; q.push(v); } } } vis[u] =0; } if(pre[t]==-1) return 0; return 1; } void end(int s,int t) { int u, sum = inf; for(u=t; u!=s; u=pre[u]) { sum = min(sum,Edge[path[u]].cap); } max_flow+=sum; //記錄最大流 for(u = t; u != s; u=pre[u]) { Edge[path[u]].cap -= sum; Edge[path[u]^1].cap += sum; ans += sum*Edge[path[u]].cost; // cost記錄的為單位流量費用,必須得乘以流量。 } } int main() { int n,k,s,t; scanf("%d%d",&n,&k); memset(head,-1,sizeof(head)); memset(z,0,sizeof(z)); NE=ans=max_flow=s=0; int num=0,h,m,ss; for(int i=0; i