題目一:
Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to right, then right to left for the next level and alternate between).
For example:
Given binary tree {3,9,20,#,#,15,7}
,
3 / \ 9 20 / \ 15 7
return its zigzag level order traversal as:
[ [3], [20,9], [15,7] ]
confused what "{1,#,2,3}"
means? >
read more on how binary tree is serialized on OJ.
分析:層次遍歷的變形哈.沒啥太大的變化,看代碼理解下哈!
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public ArrayList> zigzagLevelOrder(TreeNode root) { ArrayList> result = new ArrayList>(); if (root == null) return result; Queue queue = new LinkedList(); queue.add(root); int k = 1; ArrayList list = new ArrayList(); while (!queue.isEmpty()){ list.clear(); while (!queue.isEmpty()){ list.add(queue.remove()); } ArrayListarrays = new ArrayList (); for(int i=0; i
題目二:
Convert Sorted Array to Binary Search Tree
Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
題意:給你一個array數組,讓你求出這個數組所能組成的一個平衡的二叉樹,很明顯的遞歸問題哈,用分治的思想把中間的結點作為根結點,再一直遞歸下去就可以了哈!!
AC代碼:
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public TreeNode sortedArrayToBST(int[] num) { if (num.length == 0){ return null; } return buildBST(num, 0, num.length-1); } /* 遞歸調用 */ public TreeNode buildBST(int[] num, int left, int right){ /*當left > right 的時候,表示是葉子結點的孩子了,返回null*/ if (left > right){ return null; } /*取中間值,作為根結點的值*/ int middle = (right + left) / 2; TreeNode root = new TreeNode(num[middle]); /*求出左右孩子*/ root.left = buildBST(num, left, middle-1); root.right = buildBST(num, middle+1, right); return root; } }
類似的題目:Convert Sorted List to Binary Search Tree
Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
題意:跟上面的一樣,只不過數組換成了鏈表!!果斷要知道如何快速求出鏈表中間的那個結點哈~
/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode(int x) { val = x; next = null; } * } */ /** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public TreeNode sortedListToBST(ListNode head) { if (head == null){ return null; } return buildBST(head, null); } public TreeNode buildBST(ListNode left, ListNode right){ if (right == null && left == null){ return null; } if (right != null && right.next == left){ return null; } /*求鏈表中間結點的前一個結點 Begin*/ ListNode preLeft = new ListNode(0); preLeft.next = left; ListNode tempNode = left; ListNode preMiddleNode = preLeft; /*求鏈表中間結點的具體方法*/ while (tempNode != right && tempNode.next != right){ preMiddleNode = preMiddleNode.next; tempNode = tempNode.next.next; } /*求鏈表中間結點的前一個結點 End*/ /*遞歸咯!*/ ListNode middleNode = preMiddleNode.next; TreeNode root = new TreeNode(middleNode.val); root.left = buildBST(left, preMiddleNode); root.right = buildBST(preMiddleNode.next.next, right); return root; } }
題目三:
Surrounded Regions(考察深度搜索)
Given a 2D board containing
'X'
and'O'
, capture all regions surrounded by'X'
.A region is captured by flipping all
'O'
s into'X'
s in that surrounded region.For example,
X X X X X O O X X X O X X O X X
After running your function, the board should be:
X X X X X X X X X X X X X O X X
分析:給你一個數組,裡面包含了x(或者X) 還有 o(或者O),要求我們把o(或者O)被x(或X)包圍的情況,轉換成 o -> x 而 O -> X
這個題目,其實是典型的廣度搜索吧。。
解題方法:居然所有的邊界o(或者O),我們都認為它是不被包圍的,那麼我們只要從邊界入手就可以了...我們用一個二維數組flags來確定每個位置該出現什麼字母,如:flags[row][col] = 0 則 row行 col列出現的字母為x(或者X), flags[row][col] = 1 則 row行 col列出現的字母為o(或者O),
把所有處於邊界的o(或者O)加入到queue中,然後就是一個典型的BFS了,只需要循環出隊入隊,並做好標記,如果從隊列中出去的話,證明這個位置一定是沒有被X所包圍的,那麼標記這個位置flags[row][col] = 1;
之後只需要循環flags這個二維數組就可以了。
AC代碼:
public class Solution { private int[][] flags;//用來標記每個位置的字母 private int rowLength;//行數 private int colLength;//列數 /*自定義放入queue中的數據結構類型*/ class Node{ int i; int j; public Node(int i, int j) { this.i = i; this.j = j; } } public void solve(char[][] board){ /*初始化*/ rowLength = board.length; if (rowLength == 0 || board[0].length == 0) return ; colLength = board[0].length; /*初始化flags, queue, 然後把board[][]中的邊界字母為o(或者O)的取出放入queue*/ flags = new int[rowLength][colLength]; Queuequeue = new LinkedList (); for (int i=0; i = 0 && (board[row][col-1] == 'o' || board[row][col-1] == 'O' )&& flags[row][col-1] == 0){ queue.add(new Node(row,col-1)); } //right if (col+1 < colLength && (board[row][col+1] == 'o' || board[row][col+1] == 'O') && flags[row][col+1] == 0){ queue.add(new Node(row,col+1)); } //up if (row-1 >= 0 && (board[row-1][col] == 'o' || board[row-1][col] == 'O')&& flags[row-1][col] == 0){ queue.add(new Node(row-1,col)); } //down if (row+1 < rowLength && (board[row+1][col] == 'o' || board[row+1][col] == 'O')&& flags[row+1][col] == 0){ queue.add(new Node(row+1,col)); } } /*重新賦值board[][]*/ for (int i=0; i
題目四:
Balanced Binary Tree
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
分析:考察的其實就是對平衡二叉樹概念的理解,和二叉樹求深度的方法的掌握一棵二叉樹如果滿足平衡的條件,那麼包括它自身,和它的任何一個子樹的左右子樹的深度之差必須要小於2,這樣問題就轉換成了遞歸的了,一直遞歸下去,如果不滿足條件,則把全局的標志flag置為false;
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { private boolean flag = true; public boolean isBalanced(TreeNode root) { calDeepthByTree(root); return flag; } public int calDeepthByTree(TreeNode root) { if (root == null) return 0; if (root.left == null && root.right == null) return 1; int deepLeft = 0; int deepRight = 0; deepLeft = calDeepthByTree(root.left) + 1; deepRight = calDeepthByTree(root.right) + 1; if (Math.abs(deepRight - deepLeft) >= 2) { flag = false; } return deepRight > deepLeft ? deepRight : deepLeft; } }
題目五:
Minimum Depth of Binary Tree
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
分析: 給我們一個二叉樹,要求出從根結點到葉子結點的最短的路徑(依舊還是遞歸哈!)
很簡單,直接看代碼:
AC代碼:
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public int minDepth(TreeNode root) { /*遞歸結束條件*/ if (root == null) return 0; if (root.left == null && root.right == null) return 1; int leftdepth = minDepth(root.left); int rightdepth = minDepth(root.right); /*當其中左右子樹有一支是為null的時候,那麼路徑也只有另外一支了,不管多長都只能選那條路了*/ if (leftdepth == 0){ return rightdepth+1; } if (rightdepth == 0){ return leftdepth+1; } /*返回左右子樹中較小的一邊*/ return leftdepth > rightdepth ? rightdepth + 1 : leftdepth + 1; } }